Jegyzet
Az oldalhoz való hozzáférés engedélyezést igényel. Próbálhatod be jelentkezni vagy könyvtárat váltani.
Az oldalhoz való hozzáférés engedélyezést igényel. Megpróbálhatod a könyvtár váltását.
Egy új tömböt ad vissza, amely az 1. col1-ben található elemeket tartalmazza, de nem a col2-ben, ismétlődések nélkül.
Szemantika
from pyspark.sql import functions as sf
sf.array_except(col1, col2)
Paraméterek
| Paraméter | Típus | Description |
|---|---|---|
col1 |
pyspark.sql.Column vagy str |
Az első tömböt tartalmazó oszlop neve. |
col2 |
pyspark.sql.Column vagy str |
A második tömböt tartalmazó oszlop neve. |
Visszatérítések
pyspark.sql.Column: Egy új tömb, amely az 1. col1-ben található elemeket tartalmazza, de a col2-ben nem.
Példák
1. példa: Alapszintű használat
from pyspark.sql import Row, functions as sf
df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2=["c", "d", "a", "f"])])
df.select(sf.array_except(df.c1, df.c2)).show()
+--------------------+
|array_except(c1, c2)|
+--------------------+
| [b]|
+--------------------+
2. példa: Kivéve a gyakori elemeket
from pyspark.sql import Row, functions as sf
df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2=["d", "e", "f"])])
df.select(sf.sort_array(sf.array_except(df.c1, df.c2))).show()
+--------------------------------------+
|sort_array(array_except(c1, c2), true)|
+--------------------------------------+
| [a, b, c]|
+--------------------------------------+
3. példa: Az összes gyakori elem kivételével
from pyspark.sql import Row, functions as sf
df = spark.createDataFrame([Row(c1=["a", "b", "c"], c2=["a", "b", "c"])])
df.select(sf.array_except(df.c1, df.c2)).show()
+--------------------+
|array_except(c1, c2)|
+--------------------+
| []|
+--------------------+
4. példa: Null értékek kivételével
from pyspark.sql import Row, functions as sf
df = spark.createDataFrame([Row(c1=["a", "b", None], c2=["a", None, "c"])])
df.select(sf.array_except(df.c1, df.c2)).show()
+--------------------+
|array_except(c1, c2)|
+--------------------+
| [b]|
+--------------------+
5. példa: Üres tömbök kivételével
from pyspark.sql import Row, functions as sf
from pyspark.sql.types import ArrayType, StringType, StructField, StructType
data = [Row(c1=[], c2=["a", "b", "c"])]
schema = StructType([
StructField("c1", ArrayType(StringType()), True),
StructField("c2", ArrayType(StringType()), True)
])
df = spark.createDataFrame(data, schema)
df.select(sf.array_except(df.c1, df.c2)).show()
+--------------------+
|array_except(c1, c2)|
+--------------------+
| []|
+--------------------+