Jegyzet
Az oldalhoz való hozzáférés engedélyezést igényel. Próbálhatod be jelentkezni vagy könyvtárat váltani.
Az oldalhoz való hozzáférés engedélyezést igényel. Megpróbálhatod a könyvtár váltását.
A tömb minimális értékét adja vissza.
Szemantika
from pyspark.sql import functions as sf
sf.array_min(col)
Paraméterek
| Paraméter | Típus | Description |
|---|---|---|
col |
pyspark.sql.Column vagy str |
A tömböt jelképező oszlop vagy kifejezés neve. |
Visszatérítések
pyspark.sql.Column: Az egyes tömbök minimális értékét tartalmazó új oszlop.
Példák
1. példa: Alapszintű használat egész számtömbbel
from pyspark.sql import functions as sf
df = spark.createDataFrame([([2, 1, 3],), ([None, 10, -1],)], ['data'])
df.select(sf.array_min(df.data)).show()
+---------------+
|array_min(data)|
+---------------+
| 1|
| -1|
+---------------+
2. példa: Használat sztringtömbdel
from pyspark.sql import functions as sf
df = spark.createDataFrame([(['apple', 'banana', 'cherry'],)], ['data'])
df.select(sf.array_min(df.data)).show()
+---------------+
|array_min(data)|
+---------------+
| apple|
+---------------+
3. példa: Használat vegyes típusú tömbökkel
from pyspark.sql import functions as sf
df = spark.createDataFrame([(['apple', 1, 'cherry'],)], ['data'])
df.select(sf.array_min(df.data)).show()
+---------------+
|array_min(data)|
+---------------+
| 1|
+---------------+
4. példa: Használat tömbök tömbjével
from pyspark.sql import functions as sf
df = spark.createDataFrame([([[2, 1], [3, 4]],)], ['data'])
df.select(sf.array_min(df.data)).show()
+---------------+
|array_min(data)|
+---------------+
| [2, 1]|
+---------------+
5. példa: Használat üres tömbbel
from pyspark.sql import functions as sf
from pyspark.sql.types import ArrayType, IntegerType, StructType, StructField
schema = StructType([
StructField("data", ArrayType(IntegerType()), True)
])
df = spark.createDataFrame([([],)], schema=schema)
df.select(sf.array_min(df.data)).show()
+---------------+
|array_min(data)|
+---------------+
| NULL|
+---------------+