LightGbm(RegressionCatalog+RegressionTrainers, LightGbmRegressionTrainer+Options)
|
Create LightGbmRegressionTrainer using advanced options, which predicts a target using a gradient boosting decision tree regression model.
|
LightGbm(RegressionCatalog+RegressionTrainers, Stream, String)
|
Create LightGbmRegressionTrainer from a pre-trained LightGBM model, which predicts a target using a gradient boosting decision tree regression.
|
LightGbm(RegressionCatalog+RegressionTrainers, String, String, String, Nullable<Int32>, Nullable<Int32>, Nullable<Double>, Int32)
|
Create LightGbmRegressionTrainer, which predicts a target using a gradient boosting decision tree regression model.
|
Ols(RegressionCatalog+RegressionTrainers, OlsTrainer+Options)
|
Create OlsTrainer with advanced options, which predicts a target using a linear regression model.
|
Ols(RegressionCatalog+RegressionTrainers, String, String, String)
|
Create OlsTrainer, which predicts a target using a linear regression model.
|
LbfgsPoissonRegression(RegressionCatalog+RegressionTrainers, LbfgsPoissonRegressionTrainer+Options)
|
Create LbfgsPoissonRegressionTrainer using advanced options, which predicts a target using a linear regression model.
|
LbfgsPoissonRegression(RegressionCatalog+RegressionTrainers, String, String, String, Single, Single, Single, Int32, Boolean)
|
Create LbfgsPoissonRegressionTrainer, which predicts a target using a linear regression model.
|
OnlineGradientDescent(RegressionCatalog+RegressionTrainers, OnlineGradientDescentTrainer+Options)
|
Create OnlineGradientDescentTrainer using advanced options, which predicts a target using a linear regression model.
|
OnlineGradientDescent(RegressionCatalog+RegressionTrainers, String, String, IRegressionLoss, Single, Boolean, Single, Int32)
|
Create OnlineGradientDescentTrainer, which predicts a target using a linear regression model.
|
Sdca(RegressionCatalog+RegressionTrainers, SdcaRegressionTrainer+Options)
|
Create SdcaRegressionTrainer with advanced options, which predicts a target using a linear regression model.
|
Sdca(RegressionCatalog+RegressionTrainers, String, String, String, ISupportSdcaRegressionLoss, Nullable<Single>, Nullable<Single>, Nullable<Int32>)
|
Create SdcaRegressionTrainer, which predicts a target using a linear regression model.
|
FastForest(RegressionCatalog+RegressionTrainers, FastForestRegressionTrainer+Options)
|
Create FastForestRegressionTrainer with advanced options, which predicts a target using a decision tree regression model.
|
FastForest(RegressionCatalog+RegressionTrainers, String, String, String, Int32, Int32, Int32)
|
Create FastForestRegressionTrainer, which predicts a target using a decision tree regression model.
|
FastTree(RegressionCatalog+RegressionTrainers, FastTreeRegressionTrainer+Options)
|
Create FastTreeRegressionTrainer with advanced options, which predicts a target using a decision tree regression model.
|
FastTree(RegressionCatalog+RegressionTrainers, String, String, String, Int32, Int32, Int32, Double)
|
Create FastTreeRegressionTrainer, which predicts a target using a decision tree regression model.
|
FastTreeTweedie(RegressionCatalog+RegressionTrainers, FastTreeTweedieTrainer+Options)
|
Create FastTreeTweedieTrainer using advanced options, which predicts a target using a decision tree regression model.
|
FastTreeTweedie(RegressionCatalog+RegressionTrainers, String, String, String, Int32, Int32, Int32, Double)
|
Create FastTreeTweedieTrainer, which predicts a target using a decision tree regression model.
|
Gam(RegressionCatalog+RegressionTrainers, GamRegressionTrainer+Options)
|
Create GamRegressionTrainer using advanced options, which predicts a target using generalized additive models (GAM).
|
Gam(RegressionCatalog+RegressionTrainers, String, String, String, Int32, Int32, Double)
|
Create GamRegressionTrainer, which predicts a target using generalized additive models (GAM).
|