LbfgsTrainerBase<TOptions,TTransformer,TModel>.OptionsBase Class
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Base options class for trainer estimators deriving fromLbfgsTrainerBase<TOptions,TTransformer,TModel>.
public abstract class LbfgsTrainerBase<TOptions,TTransformer,TModel>.OptionsBase : Microsoft.ML.Trainers.TrainerInputBaseWithWeight where TOptions : LbfgsTrainerBase<TOptions,TTransformer,TModel>.OptionsBase, new() where TTransformer : ISingleFeaturePredictionTransformer<TModel> where TModel : class
type LbfgsTrainerBase<'Options, 'ransformer, 'Model (requires 'Options :> LbfgsTrainerBase<'Options, 'ransformer, 'Model>.OptionsBase and 'Options : (new : unit -> 'Options) and 'ransformer :> ISingleFeaturePredictionTransformer<'Model> and 'Model : null)>.OptionsBase = class
inherit TrainerInputBaseWithWeight
Public MustInherit Class LbfgsTrainerBase(Of TOptions, TTransformer, TModel).OptionsBase
Inherits TrainerInputBaseWithWeight
Type Parameters
- TOptions
- TTransformer
- TModel
- Inheritance
-
LbfgsTrainerBase<TOptions,TTransformer,TModel>.OptionsBase
- Derived
Constructors
LbfgsTrainerBase<TOptions,TTransformer,TModel>.OptionsBase() |
Fields
DenseOptimizer |
Force densification of the internal optimization vectors. Default is false. |
EnforceNonNegativity |
Enforce non-negative weights. Default is false. |
ExampleWeightColumnName |
Column to use for example weight. (Inherited from TrainerInputBaseWithWeight) |
FeatureColumnName |
Column to use for features. (Inherited from TrainerInputBase) |
HistorySize |
Number of previous iterations to remember for estimating the Hessian. Lower values mean faster but less accurate estimates. |
InitialWeightsDiameter |
Initial weights scale. |
L1Regularization |
L1 regularization weight. |
L2Regularization |
L2 regularization weight. |
LabelColumnName |
Column to use for labels. (Inherited from TrainerInputBaseWithLabel) |
MaximumNumberOfIterations |
Number of iterations. |
NumberOfThreads |
Number of threads. Null means use the number of processors. |
OptimizationTolerance |
Tolerance parameter for optimization convergence. (Low = slower, more accurate). |
Quiet |
Determines whether to produce output during training or not. |
StochasticGradientDescentInitilaizationTolerance |
Run SGD to initialize LR weights, converging to this tolerance. |