geometric_distribution Class
Generates a geometric distribution.
template<class IntType = int>
class geometric_distribution
{
public:
// types
typedef IntType result_type;
struct param_type;
// constructors and reset functions
explicit geometric_distribution(double p = 0.5);
explicit geometric_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& gen);
template<class URNG>
result_type operator()(URNG& gen, const param_type& parm);
// property functions
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
};
Parameters
- IntType
The integer result type, defaults to int. For possible types, see <random>.
Remarks
The template class describes a distribution that produces values of a user-specified integral type with a geometric distribution. The following table links to articles about individual members.
geometric_distribution::p |
geometric_distribution::param |
|
geometric_distribution::operator() |
The property function p() returns the value for stored distribution parameter p.
For more information about distribution classes and their members, see <random>.
For detailed information about the chi-squared distribution, see the Wolfram MathWorld article Geometric Distribution.
Example
// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>
void test(const double p, const int s) {
// uncomment to use a non-deterministic generator
// std::random_device gen;
std::mt19937 gen(1701);
std::geometric_distribution<> distr(p);
std::cout << std::endl;
std::cout << "min() == " << distr.min() << std::endl;
std::cout << "max() == " << distr.max() << std::endl;
std::cout << "p() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.p() << std::endl;
// generate the distribution as a histogram
std::map<int, int> histogram;
for (int i = 0; i < s; ++i) {
++histogram[distr(gen)];
}
// print results
std::cout << "Distribution for " << s << " samples:" << std::endl;
for (const auto& elem : histogram) {
std::cout << std::setw(5) << elem.first << ' ' << std::string(elem.second, ':') << std::endl;
}
std::cout << std::endl;
}
int main()
{
double p_dist = 0.5;
int samples = 100;
std::cout << "Use CTRL-Z to bypass data entry and run using default values." << std::endl;
std::cout << "Enter a floating point value for the \'p\' distribution parameter: ";
std::cin >> p_dist;
std::cout << "Enter an integer value for the sample count: ";
std::cin >> samples;
test(p_dist, samples);
}
Output
First test:
Use CTRL-Z to bypass data entry and run using default values. Enter a floating point value for the 'p' distribution parameter: .5 Enter an integer value for the sample count: 100 min() == 0 max() == 2147483647 p() == 0.5000000000 Distribution for 100 samples: 0 :::::::::::::::::::::::::::::::::::::::::::::::::::: 1 :::::::::::::::::::::::: 2 :::::::::::::: 3 ::::: 4 :: 5 :: 6 :
Second test:
Use CTRL-Z to bypass data entry and run using default values. Enter a floating point value for the 'p' distribution parameter: .1 Enter an integer value for the sample count: 100 min() == 0 max() == 2147483647 p() == 0.1000000000 Distribution for 100 samples: 0 ::::::::: 1 ::::::::::: 2 ::::::: 3 :::::::: 4 :::::::: 5 :::::: 6 ::::: 7 :::::: 8 ::::: 9 :::: 10 :::: 11 :: 12 : 13 : 14 ::: 15 :::: 16 ::: 17 : 18 : 19 : 20 :: 21 : 22 : 23 : 28 :: 33 : 35 : 40 :
Requirements
Header: <random>
Namespace: std