Megosztás a következőn keresztül:


Environment Osztály

Reprodukálható Python-környezetet konfigurál gépi tanulási kísérletekhez.

A környezet határozza meg a gépi tanulási kísérletekben használt Python-csomagokat, környezeti változókat és Docker-beállításokat, beleértve az adatok előkészítését, a betanítást és a webszolgáltatásban való üzembe helyezést. A környezetek felügyeltek és verziószámozottak az Azure Machine Learningben Workspace. Frissíthet egy meglévő környezetet, és újból lekérheti a verziót. A környezetek kizárólag arra a munkaterületre tartoznak, amelyben létrehozták őket, és nem használhatók a különböző munkaterületeken.

További információ a környezetekről: Újrafelhasználható környezetek létrehozása és kezelése.

Osztály környezeti konstruktor.

Öröklődés
azureml._base_sdk_common.abstract_run_config_element._AbstractRunConfigElement
Environment

Konstruktor

Environment(name, **kwargs)

Paraméterek

Name Description
name
Kötelező

A környezet neve.

Megjegyzés

Ne indítsa el a környezet nevét a "Microsoft" vagy az "AzureML" használatával. A "Microsoft" és az "AzureML" előtagok válogatott környezetekhez vannak fenntartva. További információ a válogatott környezetekről: Újrafelhasználható környezetek létrehozása és kezelése.

Megjegyzések

Az Azure Machine Learning válogatott környezeteket biztosít, amelyek előre definiált környezetek, amelyek jó kiindulási pontokat kínálnak a saját környezetek felépítéséhez. A válogatott környezeteket gyorsítótárazott Docker-rendszerképek biztosítják, így alacsonyabb futtatási előkészítési költség érhető el. További információ a válogatott környezetekről: Újrafelhasználható környezetek létrehozása és kezelése.

A környezet számos módon hozható létre az Azure Machine Learningben, többek között az alábbi esetekben:

Az alábbi példa bemutatja, hogyan hozható létre új környezet.


   from azureml.core import Environment
   myenv = Environment(name="myenv")

A környezetek a regisztrációval kezelhetők. Ezzel nyomon követheti a környezet verzióit, és újra felhasználhatja őket a későbbi futtatások során.


   myenv.register(workspace=ws)

A környezetekkel való munkáról további példákat a Jupyter Notebook Környezetek használata című témakörben talál.

Változók

Name Description
Environment.databricks

A szakasz az azureml.core.databricks.DatabricksSection kódtár függőségeit konfigurálja.

docker

Ez a szakasz a környezet specifikációinak megfelelő végső Docker-rendszerképhez kapcsolódó beállításokat konfigurálja, valamint azt, hogy Docker-tárolók használatával hozza-e létre a környezetet.

inferencing_stack_version

Ez a szakasz a lemezképhez hozzáadott következtetési veremverziót határozza meg. A következtetési verem hozzáadásának elkerülése érdekében ne állítsa be ezt az értéket. Érvényes érték: "latest".

python

Ez a szakasz határozza meg, hogy melyik Python-környezetet és -értelmezőt használja a célszámításhoz.

spark

A szakasz a Spark beállításait konfigurálja. Csak akkor használatos, ha a keretrendszer PySparkra van állítva.

r

Ez a szakasz határozza meg, hogy melyik R-környezetet használja a célszámításhoz.

version

A környezet verziója.

asset_id

Eszközazonosító. Feltölti, ha egy környezet regisztrálva van.

Metódusok

add_private_pip_wheel

Töltse fel a lemezen található privát pip kerékfájlt a munkaterülethez csatolt Azure Storage-blobba.

Kivételt jelez, ha már létezik egy azonos nevű privát pipkerék a munkaterület tárolóblobjában.

build

Hozzon létre egy Docker-rendszerképet ehhez a környezethez a felhőben.

build_local

Hozza létre a helyi Docker- vagy Conda-környezetet.

clone

Klónozza a környezeti objektumot.

Egy új nevű környezeti objektumpéldányt ad vissza.

from_conda_specification

Hozzon létre környezeti objektumot egy környezeti specifikációs YAML-fájlból.

A környezet specifikációs YAML-fájljának beszerzéséhez lásd: Környezetek kezelése a Conda felhasználói útmutatójában.

from_docker_build_context

Hozzon létre környezeti objektumot egy Docker buildkörnyezetből.

from_docker_image

Hozzon létre környezeti objektumot egy alap docker-rendszerképből, választható Python-függőségekkel.

A Python-réteg akkor lesz hozzáadva a környezethez, ha conda_specification vagy pip_requirements van megadva. conda_specification és pip_requirements kölcsönösen kizárják egymást.

from_dockerfile

Hozzon létre környezeti objektumot egy Dockerfile-ból, választható Python-függőségekkel.

A Python-réteg akkor lesz hozzáadva a környezethez, ha conda_specification vagy pip_requirements van megadva. conda_specification és pip_requirements kölcsönösen kizárják egymást.

from_existing_conda_environment

Hozzon létre egy helyileg meglévő Conda-környezetből létrehozott környezeti objektumot.

A meglévő Conda-környezetek listájának lekéréséhez futtassa a parancsot conda env list. További információ: Környezetek kezelése a Conda felhasználói útmutatójában.

from_pip_requirements

Hozzon létre egy pipkövetelmény-fájlból létrehozott környezeti objektumot.

A rendszer hozzáadja a nem rögzített pip-függőséget, ha nincs megadva pip_version .

get

Adja vissza a környezeti objektumot.

Ha a címke meg van adva, a rendszer visszaadja a korábban az értékkel címkézett objektumot. Csak egy verzió- vagy címkeparaméter adható meg. Ha mindkettő hiányzik, a rendszer a Környezeti objektum legújabb verzióját adja vissza.

get_image_details

Adja vissza a Kép részleteit.

label

A munkaterületen lévő környezeti objektum címkézése a megadott értékekkel.

list

A munkaterület környezeteit tartalmazó szótárat ad vissza.

load_from_directory

Töltse be a környezetdefiníciót egy könyvtárban lévő fájlokból.

register

Regisztrálja a környezeti objektumot a munkaterületen.

save_to_directory

Egyszerűen szerkeszthető formátumban menthet egy környezetdefiníciót egy könyvtárba.

add_private_pip_wheel

Töltse fel a lemezen található privát pip kerékfájlt a munkaterülethez csatolt Azure Storage-blobba.

Kivételt jelez, ha már létezik egy azonos nevű privát pipkerék a munkaterület tárolóblobjában.

static add_private_pip_wheel(workspace, file_path, exist_ok=False)

Paraméterek

Name Description
workspace
Kötelező

A privát pip kerék regisztrálásához használandó munkaterület-objektum.

file_path
Kötelező
str

A lemezen található helyi pip kerék elérési útja, beleértve a fájlkiterjesztést is.

exist_ok

Azt jelzi, hogy a rendszer kivételt jelez-e, ha a kerék már létezik.

Alapértelmezett érték: False

Válaszok

Típus Description
str

Visszaadja a teljes URI-t az Azure Blob Storage-beli feltöltött pipkeréknek a conda-függőségekben való használathoz.

build

Hozzon létre egy Docker-rendszerképet ehhez a környezethez a felhőben.

build(workspace, image_build_compute=None)

Paraméterek

Name Description
workspace
Kötelező

A munkaterület és a hozzá tartozó Azure Container Registry, ahol a rendszerképet tárolja.

image_build_compute
str

Annak a számítási névnek a neve, ahol a rendszerkép összeállítása megtörténik

Alapértelmezett érték: None

Válaszok

Típus Description

A kép buildelési részleteinek objektumát adja vissza.

build_local

Hozza létre a helyi Docker- vagy Conda-környezetet.

build_local(workspace, platform=None, **kwargs)

Paraméterek

Name Description
workspace
Kötelező

A munkaterület.

platform
str

Platform. Az egyik Linux, Windows vagy OSX. A rendszer alapértelmezés szerint az aktuális platformot használja.

Alapértelmezett érték: None
kwargs
Kötelező

Speciális kulcsszóargumentumok

Válaszok

Típus Description
str

Streameli a folyamatban lévő Docker- vagy conda-kimenetet a konzolra.

Megjegyzések

Az alábbi példák bemutatják, hogyan hozhat létre helyi környezetet. Győződjön meg arról, hogy a munkaterület példányosítva van érvényes azureml.core.workspace.Workspace objektumként

Helyi Conda-környezet létrehozása


   from azureml.core import Environment
   myenv = Environment(name="myenv")
   registered_env = myenv.register(workspace)
   registered_env.build_local(workspace)

Helyi Docker-környezet létrehozása


   from azureml.core import Environment
   myenv = Environment(name="myenv")
   registered_env = myenv.register(workspace)
   registered_env.build_local(workspace, useDocker=True)

Docker-rendszerkép helyi létrehozása, és igény szerint leküldés a munkaterülethez társított tárolóregisztrációs adatbázisba


   from azureml.core import Environment
   myenv = Environment(name="myenv")
   registered_env = myenv.register(workspace)
   registered_env.build_local(workspace, useDocker=True, pushImageToWorkspaceAcr=True)

clone

Klónozza a környezeti objektumot.

Egy új nevű környezeti objektumpéldányt ad vissza.

clone(new_name)

Paraméterek

Name Description
new_name
Kötelező
str

Új környezet neve

Válaszok

Típus Description

Új környezeti objektum

from_conda_specification

Hozzon létre környezeti objektumot egy környezeti specifikációs YAML-fájlból.

A környezet specifikációs YAML-fájljának beszerzéséhez lásd: Környezetek kezelése a Conda felhasználói útmutatójában.

static from_conda_specification(name, file_path)

Paraméterek

Name Description
name
Kötelező
str

A környezet neve.

file_path
Kötelező
str

A Conda-környezet specifikációja YAML-fájl elérési útja.

Válaszok

Típus Description

A környezeti objektum.

from_docker_build_context

Hozzon létre környezeti objektumot egy Docker buildkörnyezetből.

static from_docker_build_context(name, docker_build_context)

Paraméterek

Name Description
name
Kötelező
str

A környezet neve.

docker_build_context
Kötelező

A DockerBuildContext objektum.

Válaszok

Típus Description

A környezeti objektum.

from_docker_image

Hozzon létre környezeti objektumot egy alap docker-rendszerképből, választható Python-függőségekkel.

A Python-réteg akkor lesz hozzáadva a környezethez, ha conda_specification vagy pip_requirements van megadva. conda_specification és pip_requirements kölcsönösen kizárják egymást.

static from_docker_image(name, image, container_registry=None, conda_specification=None, pip_requirements=None)

Paraméterek

Name Description
name
Kötelező
str

A környezet neve.

image
Kötelező
str

teljes képnév.

conda_specification
str

conda specifikációs fájl.

Alapértelmezett érték: None
container_registry

privát tárolóadattár részletei.

Alapértelmezett érték: None
pip_requirements
str

pip requirements file ( pip requirements file).

Alapértelmezett érték: None

Válaszok

Típus Description

A környezeti objektum.

Megjegyzések

Ha az alaprendszerkép hitelesítést igénylő privát adattárból származik, és az engedélyezés nincs beállítva az AzureML-munkaterület szintjén, container_registry szükséges

from_dockerfile

Hozzon létre környezeti objektumot egy Dockerfile-ból, választható Python-függőségekkel.

A Python-réteg akkor lesz hozzáadva a környezethez, ha conda_specification vagy pip_requirements van megadva. conda_specification és pip_requirements kölcsönösen kizárják egymást.

static from_dockerfile(name, dockerfile, conda_specification=None, pip_requirements=None)

Paraméterek

Name Description
name
Kötelező
str

A környezet neve.

dockerfile
Kötelező
str

Dockerfile-tartalom vagy a fájl elérési útja.

conda_specification
str

conda specifikációs fájl.

Alapértelmezett érték: None
pip_requirements
str

pip requirements file ( pip requirements file).

Alapértelmezett érték: None

Válaszok

Típus Description

A környezeti objektum.

from_existing_conda_environment

Hozzon létre egy helyileg meglévő Conda-környezetből létrehozott környezeti objektumot.

A meglévő Conda-környezetek listájának lekéréséhez futtassa a parancsot conda env list. További információ: Környezetek kezelése a Conda felhasználói útmutatójában.

static from_existing_conda_environment(name, conda_environment_name)

Paraméterek

Name Description
name
Kötelező
str

A környezet neve.

conda_environment_name
Kötelező
str

Egy helyileg meglévő Conda-környezet neve.

Válaszok

Típus Description

A környezeti objektum vagy a Nincs, ha a conda specifikációs fájljának exportálása sikertelen.

from_pip_requirements

Hozzon létre egy pipkövetelmény-fájlból létrehozott környezeti objektumot.

A rendszer hozzáadja a nem rögzített pip-függőséget, ha nincs megadva pip_version .

static from_pip_requirements(name, file_path, pip_version=None)

Paraméterek

Name Description
name
Kötelező
str

A környezet neve.

file_path
Kötelező
str

A pipkövetelmények fájl elérési útja.

pip_version
str

Pip-verzió a Conda-környezethez.

Alapértelmezett érték: None

Válaszok

Típus Description

A környezeti objektum.

get

Adja vissza a környezeti objektumot.

Ha a címke meg van adva, a rendszer visszaadja a korábban az értékkel címkézett objektumot. Csak egy verzió- vagy címkeparaméter adható meg. Ha mindkettő hiányzik, a rendszer a Környezeti objektum legújabb verzióját adja vissza.

static get(workspace, name, version=None, label=None)

Paraméterek

Name Description
workspace
Kötelező

A környezetet tartalmazó munkaterület.

name
Kötelező
str

A visszatérni kívánt környezet neve.

version
str

A visszatérni kívánt környezet verziója.

Alapértelmezett érték: None
label
str

Környezeti címke értéke.

Alapértelmezett érték: None

Válaszok

Típus Description

A környezeti objektum.

get_image_details

Adja vissza a Kép részleteit.

get_image_details(workspace)

Paraméterek

Name Description
workspace
Kötelező

A munkaterület.

Válaszok

Típus Description

A kép részleteit diktálásként adja vissza

label

A munkaterületen lévő környezeti objektum címkézése a megadott értékekkel.

static label(workspace, name, version, labels)

Paraméterek

Name Description
workspace
Kötelező

A(z)

name
Kötelező
str

Környezet neve

version
Kötelező
str

Környezeti verzió

labels
Kötelező

Környezet címkézendő értékei a következővel:

list

A munkaterület környezeteit tartalmazó szótárat ad vissza.

static list(workspace)

Paraméterek

Name Description
workspace
Kötelező

A munkaterület, ahonnan a környezeteket listázni szeretné.

Válaszok

Típus Description
<xref:builtin.dict>[str, Environment]

A környezeti objektumok szótára.

load_from_directory

Töltse be a környezetdefiníciót egy könyvtárban lévő fájlokból.

static load_from_directory(path)

Paraméterek

Name Description
path
Kötelező
str

A forráskönyvtár elérési útja.

register

Regisztrálja a környezeti objektumot a munkaterületen.

register(workspace)

Paraméterek

Name Description
workspace
Kötelező

A(z)

name
Kötelező
str

Válaszok

Típus Description

A környezeti objektumot adja vissza.

save_to_directory

Egyszerűen szerkeszthető formátumban menthet egy környezetdefiníciót egy könyvtárba.

save_to_directory(path, overwrite=False)

Paraméterek

Name Description
path
Kötelező
str

A célkönyvtár elérési útja.

overwrite

Ha egy meglévő könyvtárat felül kell írni. Alapértelmezés szerint hamis.

Alapértelmezett érték: False

Attribútumok

environment_variables

A futtatókörnyezet változóinak beállításához használja az azureml.core.RunConfiguration objektumot.