Bagikan melalui


Titik Pemeriksaan dan Lanjutkan Alur Kerja

Checkpointing memungkinkan alur kerja menyimpan statusnya di titik tertentu dan melanjutkan kembali eksekusi, bahkan setelah proses dimulai ulang. Ini sangat penting untuk alur kerja yang berlangsung lama, pemulihan kesalahan, dan skenario dengan keterlibatan manusia di dalam proses (human-in-the-loop).

Konsep yang Tercakup

Prasyarat

Komponen Utama

Menginstal paket NuGet

Pertama, instal paket yang diperlukan untuk proyek .NET Anda:

dotnet add package Microsoft.Agents.AI.Workflows --prerelease

CheckpointManager

CheckpointManager menyediakan fungsionalitas penyimpanan dan pengambilan titik pemeriksaan.

using Microsoft.Agents.AI.Workflows;

// Use the default in-memory checkpoint manager
var checkpointManager = CheckpointManager.Default;

// Or create a custom checkpoint manager with JSON serialization
var checkpointManager = CheckpointManager.CreateJson(store, customOptions);

Mengaktifkan Titik Pemeriksaan

Aktifkan titik pemeriksaan saat menjalankan alur kerja menggunakan InProcessExecution:

using Microsoft.Agents.AI.Workflows;

// Create workflow with checkpointing support
var workflow = await WorkflowHelper.GetWorkflowAsync();
var checkpointManager = CheckpointManager.Default;

// Execute with checkpointing enabled
await using Checkpointed<StreamingRun> checkpointedRun = await InProcessExecution
    .StreamAsync(workflow, NumberSignal.Init, checkpointManager);

Persistensi Status

Status Pelaksana

Pelaksana dapat mempertahankan status lokal yang bertahan dari titik pemeriksaan menggunakan Executor<T> kelas dasar:

internal sealed class GuessNumberExecutor : Executor<NumberSignal>("Guess")
{
    private const string StateKey = "GuessNumberExecutor.State";

    public int LowerBound { get; private set; }
    public int UpperBound { get; private set; }

    public GuessNumberExecutor() : this()
    {
    }

    public override async ValueTask HandleAsync(NumberSignal message, IWorkflowContext context, CancellationToken cancellationToken = default)
    {
        int guess = (LowerBound + UpperBound) / 2;
        await context.SendMessageAsync(guess, cancellationToken);
    }

    /// <summary>
    /// Checkpoint the current state of the executor.
    /// This must be overridden to save any state that is needed to resume the executor.
    /// </summary>
    protected override ValueTask OnCheckpointingAsync(IWorkflowContext context, CancellationToken cancellationToken = default) =>
        context.QueueStateUpdateAsync(StateKey, (LowerBound, UpperBound), cancellationToken);

    /// <summary>
    /// Restore the state of the executor from a checkpoint.
    /// This must be overridden to restore any state that was saved during checkpointing.
    /// </summary>
    protected override async ValueTask OnCheckpointRestoredAsync(IWorkflowContext context, CancellationToken cancellationToken = default)
    {
        var state = await context.ReadStateAsync<(int, int)>(StateKey, cancellationToken);
        (LowerBound, UpperBound) = state;
    }
}

Pembuatan Titik Pemeriksaan Otomatis

Titik pemeriksaan secara otomatis dibuat di akhir setiap langkah super saat manajer titik pemeriksaan disediakan:

var checkpoints = new List<CheckpointInfo>();

await foreach (WorkflowEvent evt in checkpointedRun.Run.WatchStreamAsync())
{
    switch (evt)
    {
        case SuperStepCompletedEvent superStepCompletedEvt:
            // Checkpoints are automatically created at super step boundaries
            CheckpointInfo? checkpoint = superStepCompletedEvt.CompletionInfo!.Checkpoint;
            if (checkpoint is not null)
            {
                checkpoints.Add(checkpoint);
                Console.WriteLine($"Checkpoint created at step {checkpoints.Count}.");
            }
            break;

        case WorkflowOutputEvent workflowOutputEvt:
            Console.WriteLine($"Workflow completed with result: {workflowOutputEvt.Data}");
            break;
    }
}

Bekerja dengan Titik Kontrol

Mengakses Informasi Titik Pemeriksaan

Akses metadata titik pemeriksaan dari eksekusi yang selesai:

// Get all checkpoints from a checkpointed run
var allCheckpoints = checkpointedRun.Checkpoints;

// Get the latest checkpoint
var latestCheckpoint = checkpointedRun.LatestCheckpoint;

// Access checkpoint details
foreach (var checkpoint in checkpoints)
{
    Console.WriteLine($"Checkpoint ID: {checkpoint.CheckpointId}");
    Console.WriteLine($"Step Number: {checkpoint.StepNumber}");
    Console.WriteLine($"Parent ID: {checkpoint.Parent?.CheckpointId ?? "None"}");
}

Penyimpanan Titik Pemeriksaan

Titik pemeriksaan dikelola melalui CheckpointManager antarmuka:

// Commit a checkpoint (usually done automatically)
CheckpointInfo checkpointInfo = await checkpointManager.CommitCheckpointAsync(runId, checkpoint);

// Retrieve a checkpoint
Checkpoint restoredCheckpoint = await checkpointManager.LookupCheckpointAsync(runId, checkpointInfo);

Lanjutkan dari Titik Pemeriksaan

Streaming Lanjutkan

Lanjutkan eksekusi dari titik pemeriksaan dan streaming peristiwa secara real time:

// Resume from a specific checkpoint with streaming
CheckpointInfo savedCheckpoint = checkpoints[checkpointIndex];

await using Checkpointed<StreamingRun> resumedRun = await InProcessExecution
    .ResumeStreamAsync(workflow, savedCheckpoint, checkpointManager, runId);

await foreach (WorkflowEvent evt in resumedRun.Run.WatchStreamAsync())
{
    switch (evt)
    {
        case ExecutorCompletedEvent executorCompletedEvt:
            Console.WriteLine($"Executor {executorCompletedEvt.ExecutorId} completed.");
            break;

        case WorkflowOutputEvent workflowOutputEvt:
            Console.WriteLine($"Workflow completed with result: {workflowOutputEvt.Data}");
            return;
    }
}

Lanjutkan Non-Streaming

Lanjutkan dan tunggu penyelesaian:

// Resume from checkpoint without streaming
Checkpointed<Run> resumedRun = await InProcessExecution
    .ResumeAsync(workflow, savedCheckpoint, checkpointManager, runId);

// Wait for completion and get final result
var result = await resumedRun.Run.WaitForCompletionAsync();

Pemulihan di Tempat

Pulihkan titik pemeriksaan langsung ke instans eksekusi yang ada:

// Restore checkpoint to the same run instance
await checkpointedRun.RestoreCheckpointAsync(savedCheckpoint);

// Continue execution from the restored state
await foreach (WorkflowEvent evt in checkpointedRun.Run.WatchStreamAsync())
{
    // Handle events as normal
    if (evt is WorkflowOutputEvent outputEvt)
    {
        Console.WriteLine($"Resumed workflow result: {outputEvt.Data}");
        break;
    }
}

Instans Alur Kerja Baru (Rehidrasi)

Buat instans alur kerja baru dari titik pemeriksaan:

// Create a completely new workflow instance
var newWorkflow = await WorkflowHelper.GetWorkflowAsync();

// Resume with the new instance from a saved checkpoint
await using Checkpointed<StreamingRun> newCheckpointedRun = await InProcessExecution
    .ResumeStreamAsync(newWorkflow, savedCheckpoint, checkpointManager, originalRunId);

await foreach (WorkflowEvent evt in newCheckpointedRun.Run.WatchStreamAsync())
{
    if (evt is WorkflowOutputEvent workflowOutputEvt)
    {
        Console.WriteLine($"Rehydrated workflow result: {workflowOutputEvt.Data}");
        break;
    }
}

Human-in-the-Loop dengan Titik Pemeriksaan

Gabungkan titik pemeriksaan dengan alur kerja human-in-the-loop:

var checkpoints = new List<CheckpointInfo>();

await foreach (WorkflowEvent evt in checkpointedRun.Run.WatchStreamAsync())
{
    switch (evt)
    {
        case RequestInfoEvent requestInputEvt:
            // Handle external requests
            ExternalResponse response = HandleExternalRequest(requestInputEvt.Request);
            await checkpointedRun.Run.SendResponseAsync(response);
            break;

        case SuperStepCompletedEvent superStepCompletedEvt:
            // Save checkpoint after each interaction
            CheckpointInfo? checkpoint = superStepCompletedEvt.CompletionInfo!.Checkpoint;
            if (checkpoint is not null)
            {
                checkpoints.Add(checkpoint);
                Console.WriteLine($"Checkpoint created after human interaction.");
            }
            break;

        case WorkflowOutputEvent workflowOutputEvt:
            Console.WriteLine($"Workflow completed: {workflowOutputEvt.Data}");
            return;
    }
}

// Later, resume from any checkpoint
if (checkpoints.Count > 0)
{
    var selectedCheckpoint = checkpoints[1]; // Select specific checkpoint
    await checkpointedRun.RestoreCheckpointAsync(selectedCheckpoint);

    // Continue from that point
    await foreach (WorkflowEvent evt in checkpointedRun.Run.WatchStreamAsync())
    {
        // Handle remaining workflow execution
    }
}

Pola Contoh Lengkap

Berikut adalah pola alur kerja titik pemeriksaan komprehensif:

using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using Microsoft.Agents.AI.Workflows;

public static class CheckpointingExample
{
    public static async Task RunAsync()
    {
        // Create workflow and checkpoint manager
        var workflow = await WorkflowHelper.GetWorkflowAsync();
        var checkpointManager = CheckpointManager.Default;
        var checkpoints = new List<CheckpointInfo>();

        Console.WriteLine("Starting workflow with checkpointing...");

        // Execute workflow with checkpointing
        await using Checkpointed<StreamingRun> checkpointedRun = await InProcessExecution
            .StreamAsync(workflow, NumberSignal.Init, checkpointManager);

        // Monitor execution and collect checkpoints
        await foreach (WorkflowEvent evt in checkpointedRun.Run.WatchStreamAsync())
        {
            switch (evt)
            {
                case ExecutorCompletedEvent executorEvt:
                    Console.WriteLine($"Executor {executorEvt.ExecutorId} completed.");
                    break;

                case SuperStepCompletedEvent superStepEvt:
                    var checkpoint = superStepEvt.CompletionInfo!.Checkpoint;
                    if (checkpoint is not null)
                    {
                        checkpoints.Add(checkpoint);
                        Console.WriteLine($"Checkpoint {checkpoints.Count} created.");
                    }
                    break;

                case WorkflowOutputEvent outputEvt:
                    Console.WriteLine($"Workflow completed: {outputEvt.Data}");
                    goto FinishExecution;
            }
        }

        FinishExecution:
        Console.WriteLine($"Total checkpoints created: {checkpoints.Count}");

        // Demonstrate resuming from a checkpoint
        if (checkpoints.Count > 5)
        {
            var selectedCheckpoint = checkpoints[5];
            Console.WriteLine($"Resuming from checkpoint 6...");

            // Restore to same instance
            await checkpointedRun.RestoreCheckpointAsync(selectedCheckpoint);

            await foreach (WorkflowEvent evt in checkpointedRun.Run.WatchStreamAsync())
            {
                if (evt is WorkflowOutputEvent resumedOutputEvt)
                {
                    Console.WriteLine($"Resumed workflow result: {resumedOutputEvt.Data}");
                    break;
                }
            }
        }

        // Demonstrate rehydration with new workflow instance
        if (checkpoints.Count > 3)
        {
            var newWorkflow = await WorkflowHelper.GetWorkflowAsync();
            var rehydrationCheckpoint = checkpoints[3];

            Console.WriteLine("Rehydrating from checkpoint 4 with new workflow instance...");

            await using Checkpointed<StreamingRun> newRun = await InProcessExecution
                .ResumeStreamAsync(newWorkflow, rehydrationCheckpoint, checkpointManager, checkpointedRun.Run.RunId);

            await foreach (WorkflowEvent evt in newRun.Run.WatchStreamAsync())
            {
                if (evt is WorkflowOutputEvent rehydratedOutputEvt)
                {
                    Console.WriteLine($"Rehydrated workflow result: {rehydratedOutputEvt.Data}");
                    break;
                }
            }
        }
    }
}

Manfaat Utama

  • Toleransi Kesalahan: Alur kerja dapat pulih dari kegagalan dengan berlanjut dari titik pemeriksaan terakhir
  • Proses yang Berjalan Lama: Memecah alur kerja panjang menjadi segmen yang dapat dikelola dengan batas pos pemeriksaan otomatis
  • Human-in-the-Loop: Jeda untuk input eksternal dan lanjutkan nanti dari status tersimpan
  • Penelusuran kesalahan: Memeriksa status alur kerja pada titik tertentu dan melanjutkan eksekusi untuk pengujian
  • Portabilitas: Titik pemeriksaan dapat dipulihkan ke instans alur kerja baru (rehidrasi)
  • Manajemen Otomatis: Titik pemeriksaan dibuat secara otomatis pada batas langkah super

Menjalankan Contoh Program

Untuk implementasi kerja lengkap, lihat sampel CheckpointAndResume.

Komponen Utama

FileCheckpointStorage

Kelas ini FileCheckpointStorage menyediakan penyimpanan titik pemeriksaan persisten menggunakan file JSON:

from agent_framework import FileCheckpointStorage
from pathlib import Path

# Initialize checkpoint storage
checkpoint_storage = FileCheckpointStorage(storage_path="./checkpoints")

Mengaktifkan Titik Pemeriksaan

Aktifkan titik pemeriksaan saat membangun alur kerja Anda:

from agent_framework import WorkflowBuilder

workflow = (
    WorkflowBuilder(max_iterations=5)
    .add_edge(executor1, executor2)
    .set_start_executor(executor1)
    .with_checkpointing(checkpoint_storage=checkpoint_storage)  # Enable checkpointing
    .build()
)

Persistensi Status

Status Pelaksana

Pelaksana dapat mempertahankan status lokal yang bertahan dari titik pemeriksaan:

from agent_framework import Executor, WorkflowContext, handler

class WorkerExecutor(Executor):
    """Processes numbers to compute their factor pairs and manages executor state for checkpointing."""

    def __init__(self, id: str) -> None:
        super().__init__(id=id)
        self._composite_number_pairs: dict[int, list[tuple[int, int]]] = {}

    @handler
    async def compute(
        self,
        task: ComputeTask,
        ctx: WorkflowContext[ComputeTask, dict[int, list[tuple[int, int]]]],
    ) -> None:
        """Process the next number in the task, computing its factor pairs."""
        next_number = task.remaining_numbers.pop(0)

        print(f"WorkerExecutor: Computing factor pairs for {next_number}")
        pairs: list[tuple[int, int]] = []
        for i in range(1, next_number):
            if next_number % i == 0:
                pairs.append((i, next_number // i))
        self._composite_number_pairs[next_number] = pairs

        if not task.remaining_numbers:
            # All numbers processed - output the results
            await ctx.yield_output(self._composite_number_pairs)
        else:
            # More numbers to process - continue with remaining task
            await ctx.send_message(task)

    @override
    async def on_checkpoint_save(self) -> dict[str, Any]:
        """Save the executor's internal state for checkpointing."""
        return {"composite_number_pairs": self._composite_number_pairs}

    @override
    async def on_checkpoint_restore(self, state: dict[str, Any]) -> None:
        """Restore the executor's internal state from a checkpoint."""
        self._composite_number_pairs = state.get("composite_number_pairs", {})

Bekerja dengan Titik Kontrol

Mencantumkan Titik Pemeriksaan

Mengambil dan memeriksa titik pemeriksaan yang tersedia:

# List all checkpoints
all_checkpoints = await checkpoint_storage.list_checkpoints()

# List checkpoints for a specific workflow
workflow_checkpoints = await checkpoint_storage.list_checkpoints(workflow_id="my-workflow")

# Sort by creation time
sorted_checkpoints = sorted(all_checkpoints, key=lambda cp: cp.timestamp)

Lanjutkan dari Titik Pemeriksaan

Streaming Lanjutkan

Lanjutkan eksekusi dan streaming peristiwa secara real-time:

# Resume from a specific checkpoint
async for event in workflow.run_stream(
    checkpoint_id="checkpoint-id",
    checkpoint_storage=checkpoint_storage
):
    print(f"Resumed Event: {event}")

    if isinstance(event, WorkflowOutputEvent):
        print(f"Final Result: {event.data}")
        break

Lanjutkan Non-Streaming

Lanjutkan dan dapatkan semua hasil sekaligus:

# Resume and wait for completion
result = await workflow.run(
    checkpoint_id="checkpoint-id",
    checkpoint_storage=checkpoint_storage
)

# Access final outputs
outputs = result.get_outputs()
print(f"Final outputs: {outputs}")

Lanjutkan dengan Permintaan Tertunda

Saat melanjutkan dari titik pemeriksaan yang berisi permintaan yang tertunda, alur kerja akan memancarkan kembali peristiwa permintaan tersebut, memungkinkan Anda untuk mengambil dan meresponsnya:

request_info_events = []
# Resume from checkpoint - pending requests will be re-emitted
async for event in workflow.run_stream(
    checkpoint_id="checkpoint-id",
    checkpoint_storage=checkpoint_storage
):
    if isinstance(event, RequestInfoEvent):
        # Capture re-emitted pending requests
        print(f"Pending request re-emitted: {event.request_id}")
        request_info_events.append(event)

# Handle the request and provide response
# If responses are already provided, no need to handle them again
responses = {}
for event in request_info_events:
    response = handle_request(event.data)
    responses[event.request_id] = response

# Send response back to workflow
async for event in workflow.send_responses_streaming(responses):
    if isinstance(event, WorkflowOutputEvent):
        print(f"Workflow completed: {event.data}")

Jika melanjutkan dari titik pemeriksaan dengan permintaan tertunda yang telah direspons, Anda masih perlu memanggil run_stream() untuk melanjutkan alur kerja diikuti send_responses_streaming() dengan respons yang telah disediakan sebelumnya.

Pilihan Titik Pemeriksaan Interaktif

Buat pilihan titik pemeriksaan yang mudah digunakan:

async def select_and_resume_checkpoint(workflow, storage):
    # Get available checkpoints
    checkpoints = await storage.list_checkpoints()
    if not checkpoints:
        print("No checkpoints available")
        return

    # Sort and display options
    sorted_cps = sorted(checkpoints, key=lambda cp: cp.timestamp)
    print("Available checkpoints:")
    for i, cp in enumerate(sorted_cps):
        summary = get_checkpoint_summary(cp)
        print(f"[{i}] {summary.checkpoint_id[:8]}... iter={summary.iteration_count}")

    # Get user selection
    try:
        idx = int(input("Enter checkpoint index: "))
        selected = sorted_cps[idx]

        # Resume from selected checkpoint
        print(f"Resuming from checkpoint: {selected.checkpoint_id}")
        async for event in workflow.run_stream(
            selected.checkpoint_id,
            checkpoint_storage=storage
        ):
            print(f"Event: {event}")

    except (ValueError, IndexError):
        print("Invalid selection")

Pola Contoh Lengkap

Berikut adalah pola alur kerja titik pemeriksaan umum:

import asyncio
from pathlib import Path

from agent_framework import (
    FileCheckpointStorage,
    WorkflowBuilder,
    WorkflowOutputEvent,
    get_checkpoint_summary
)

async def main():
    # Setup checkpoint storage
    checkpoint_dir = Path("./checkpoints")
    checkpoint_dir.mkdir(exist_ok=True)
    storage = FileCheckpointStorage(checkpoint_dir)

    # Build workflow with checkpointing
    workflow = (
        WorkflowBuilder()
        .add_edge(executor1, executor2)
        .set_start_executor(executor1)
        .with_checkpointing(storage)
        .build()
    )

    # Initial run
    print("Running workflow...")
    async for event in workflow.run_stream("input data"):
        print(f"Event: {event}")

    # List and inspect checkpoints
    checkpoints = await storage.list_checkpoints()
    for cp in sorted(checkpoints, key=lambda c: c.timestamp):
        summary = get_checkpoint_summary(cp)
        print(f"Checkpoint: {summary.checkpoint_id[:8]}... iter={summary.iteration_count}")

    # Resume from a checkpoint
    if checkpoints:
        latest = max(checkpoints, key=lambda cp: cp.timestamp)
        print(f"Resuming from: {latest.checkpoint_id}")

        async for event in workflow.run_stream(latest.checkpoint_id):
            print(f"Resumed: {event}")

if __name__ == "__main__":
    asyncio.run(main())

Manfaat Utama

  • Toleransi Kesalahan: Alur kerja dapat pulih dari kegagalan dengan berlanjut dari titik pemeriksaan terakhir
  • Proses Berjalan Lama: Memecah alur kerja panjang menjadi segmen yang dapat dikelola dengan batas titik kontrol
  • Human-in-the-Loop: Jeda untuk masukan dari manusia dan lanjutkan nanti - permintaan tertunda akan diproses ulang setelah dilanjutkan kembali
  • Penelusuran kesalahan: Memeriksa status alur kerja pada titik tertentu dan melanjutkan eksekusi untuk pengujian
  • Manajemen Sumber Daya: Menghentikan dan memulai ulang alur kerja berdasarkan ketersediaan sumber daya

Menjalankan Contoh Program

Untuk implementasi yang berfungsi lengkap, lihat contoh Checkpoint dengan Resume.

Langkah Selanjutnya