Bagikan melalui


array_compact

Menghapus nilai null dari array.

Syntax

from pyspark.sql import functions as sf

sf.array_compact(col)

Parameter-parameternya

Pengaturan Tipe Description
col pyspark.sql.Column atau str Nama kolom atau ekspresi

Pengembalian Barang

pyspark.sql.Column: Kolom baru yang merupakan array yang tidak termasuk nilai null dari kolom input.

Examples

Contoh 1: Menghapus nilai null dari array sederhana

from pyspark.sql import functions as sf
df = spark.createDataFrame([([1, None, 2, 3],)], ['data'])
df.select(sf.array_compact(df.data)).show()
+-------------------+
|array_compact(data)|
+-------------------+
|          [1, 2, 3]|
+-------------------+

Contoh 2: Menghapus nilai null dari beberapa array

from pyspark.sql import functions as sf
df = spark.createDataFrame([([1, None, 2, 3],), ([4, 5, None, 4],)], ['data'])
df.select(sf.array_compact(df.data)).show()
+-------------------+
|array_compact(data)|
+-------------------+
|          [1, 2, 3]|
|          [4, 5, 4]|
+-------------------+

Contoh 3: Menghapus nilai null dari array dengan semua nilai null

from pyspark.sql import functions as sf
from pyspark.sql.types import ArrayType, StringType, StructField, StructType schema = StructType([StructField("data", ArrayType(StringType()), True)])
df = spark.createDataFrame([([None, None, None],)], schema)
df.select(sf.array_compact(df.data)).show()
+-------------------+
|array_compact(data)|
+-------------------+
|                 []|
+-------------------+

Contoh 4: Menghapus nilai null dari array tanpa nilai null

from pyspark.sql import functions as sf
df = spark.createDataFrame([([1, 2, 3],)], ['data'])
df.select(sf.array_compact(df.data)).show()
+-------------------+
|array_compact(data)|
+-------------------+
|          [1, 2, 3]|
+-------------------+

Contoh 5: Menghapus nilai null dari array kosong

from pyspark.sql import functions as sf
from pyspark.sql.types import ArrayType, StringType, StructField, StructType
schema = StructType([
  StructField("data", ArrayType(StringType()), True)
])
df = spark.createDataFrame([([],)], schema)
df.select(sf.array_compact(df.data)).show()
+-------------------+
|array_compact(data)|
+-------------------+
|                 []|
+-------------------+