Bagikan melalui


__cpuid, __cpuidex

Khusus Microsoft

cpuid Menghasilkan instruksi yang tersedia di x86 dan x64. Instruksi ini meminta prosesor untuk informasi tentang fitur yang didukung dan jenis CPU.

Sintaks

void __cpuid(
   int cpuInfo[4],
   int function_id
);

void __cpuidex(
   int cpuInfo[4],
   int function_id,
   int subfunction_id
);

Parameter

cpuInfo
[out] Array empat bilangan bulat yang berisi informasi yang dikembalikan dalam EAX, EBX, ECX, dan EDX tentang fitur CPU yang didukung.

function_id
[di] Kode yang menentukan informasi yang akan diambil, diteruskan dalam EAX.

subfunction_id
[di] Kode tambahan yang menentukan informasi yang akan diambil, diteruskan di ECX.

Persyaratan

Intrinsik Sistem
__cpuid x86, x64
__cpuidex x86, x64

File header<intrin.h>

Keterangan

Intrinsik ini menyimpan fitur yang didukung dan informasi CPU yang dikembalikan oleh cpuid instruksi di cpuInfo, array empat bilangan bulat 32-bit yang diisi dengan nilai register EAX, EBX, ECX, dan EDX (dalam urutan tersebut). Informasi yang dikembalikan memiliki arti yang berbeda tergantung pada nilai yang diteruskan sebagai parameter function_id . Informasi yang dikembalikan dengan berbagai nilai function_id bergantung pada prosesor.

Intrinsik __cpuid menghapus register ECX sebelum memanggil cpuid instruksi. Intrinsik __cpuidex menetapkan nilai register ECX ke subfunction_id sebelum menghasilkan cpuid instruksi. Ini memungkinkan Anda untuk mengumpulkan informasi tambahan tentang prosesor.

Untuk informasi selengkapnya tentang parameter tertentu yang akan digunakan dan nilai yang dikembalikan oleh intrinsik ini pada prosesor Intel, lihat dokumentasi untuk cpuid instruksi di Intel 64 dan IA-32 Arsitektur Pengembang Perangkat Lunak Volume 2: Referensi Set Instruksi dan Referensi Pemrograman Ekstensi Set Instruksi Arsitektur Intel. Dokumentasi Intel menggunakan istilah "daun" dan "subleaf" untuk parameter function_id dan subfunction_id yang diteruskan di EAX dan ECX.

Untuk informasi selengkapnya tentang parameter tertentu yang akan digunakan dan nilai yang dikembalikan oleh intrinsik ini pada prosesor AMD, lihat dokumentasi untuk cpuid instruksi dalam Manual Volume 3 Programmer Arsitektur AMD64: Tujuan Umum dan Instruksi Sistem, dan dalam Panduan Revisi untuk keluarga prosesor tertentu. Untuk tautan ke dokumen ini dan informasi lainnya, lihat halaman Panduan Pengembang AMD , Manual , & Dokumen ISA. Dokumentasi AMD menggunakan istilah "nomor fungsi" dan "nomor subfungsi" untuk parameter function_id dan subfunction_id yang diteruskan dalam EAX dan ECX.

Saat argumen function_id adalah 0, cpuInfo[0] mengembalikan nilai function_id tertinggi yang tidak diperluas yang didukung oleh prosesor. Produsen prosesor dikodekan dalam cpuInfo[1], cpuInfo[2], dan cpuInfo[3].

Dukungan untuk ekstensi set instruksi dan fitur CPU tertentu dikodekan dalam hasil cpuInfo yang dikembalikan untuk nilai function_id yang lebih tinggi. Untuk informasi selengkapnya, lihat manual yang ditautkan di atas, dan contoh kode berikut.

Beberapa prosesor mendukung informasi Extended Function CPUID. Saat didukung, nilai function_id dari 0x80000000 mungkin digunakan untuk mengembalikan informasi. Untuk menentukan nilai bermakna maksimum yang diizinkan, atur function_id ke 0x80000000. Nilai maksimum function_id yang didukung untuk fungsi yang diperluas akan ditulis ke cpuInfo[0].

Contoh

Contoh ini menunjukkan beberapa informasi yang tersedia melalui __cpuid intrinsik dan __cpuidex . Aplikasi ini mencantumkan ekstensi set instruksi yang didukung oleh prosesor saat ini. Output menunjukkan kemungkinan hasil untuk prosesor tertentu.

// InstructionSet.cpp
// Compile by using: cl /EHsc /W4 InstructionSet.cpp
// processor: x86, x64
// Uses the __cpuid intrinsic to get information about
// CPU extended instruction set support.

#include <iostream>
#include <vector>
#include <bitset>
#include <array>
#include <string>
#include <intrin.h>

class InstructionSet
{
    // forward declarations
    class InstructionSet_Internal;

public:
    // getters
    static std::string Vendor(void) { return CPU_Rep.vendor_; }
    static std::string Brand(void) { return CPU_Rep.brand_; }

    static bool SSE3(void) { return CPU_Rep.f_1_ECX_[0]; }
    static bool PCLMULQDQ(void) { return CPU_Rep.f_1_ECX_[1]; }
    static bool MONITOR(void) { return CPU_Rep.f_1_ECX_[3]; }
    static bool SSSE3(void) { return CPU_Rep.f_1_ECX_[9]; }
    static bool FMA(void) { return CPU_Rep.f_1_ECX_[12]; }
    static bool CMPXCHG16B(void) { return CPU_Rep.f_1_ECX_[13]; }
    static bool SSE41(void) { return CPU_Rep.f_1_ECX_[19]; }
    static bool SSE42(void) { return CPU_Rep.f_1_ECX_[20]; }
    static bool MOVBE(void) { return CPU_Rep.f_1_ECX_[22]; }
    static bool POPCNT(void) { return CPU_Rep.f_1_ECX_[23]; }
    static bool AES(void) { return CPU_Rep.f_1_ECX_[25]; }
    static bool XSAVE(void) { return CPU_Rep.f_1_ECX_[26]; }
    static bool OSXSAVE(void) { return CPU_Rep.f_1_ECX_[27]; }
    static bool AVX(void) { return CPU_Rep.f_1_ECX_[28]; }
    static bool F16C(void) { return CPU_Rep.f_1_ECX_[29]; }
    static bool RDRAND(void) { return CPU_Rep.f_1_ECX_[30]; }

    static bool MSR(void) { return CPU_Rep.f_1_EDX_[5]; }
    static bool CX8(void) { return CPU_Rep.f_1_EDX_[8]; }
    static bool SEP(void) { return CPU_Rep.f_1_EDX_[11]; }
    static bool CMOV(void) { return CPU_Rep.f_1_EDX_[15]; }
    static bool CLFSH(void) { return CPU_Rep.f_1_EDX_[19]; }
    static bool MMX(void) { return CPU_Rep.f_1_EDX_[23]; }
    static bool FXSR(void) { return CPU_Rep.f_1_EDX_[24]; }
    static bool SSE(void) { return CPU_Rep.f_1_EDX_[25]; }
    static bool SSE2(void) { return CPU_Rep.f_1_EDX_[26]; }

    static bool FSGSBASE(void) { return CPU_Rep.f_7_EBX_[0]; }
    static bool BMI1(void) { return CPU_Rep.f_7_EBX_[3]; }
    static bool HLE(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_7_EBX_[4]; }
    static bool AVX2(void) { return CPU_Rep.f_7_EBX_[5]; }
    static bool BMI2(void) { return CPU_Rep.f_7_EBX_[8]; }
    static bool ERMS(void) { return CPU_Rep.f_7_EBX_[9]; }
    static bool INVPCID(void) { return CPU_Rep.f_7_EBX_[10]; }
    static bool RTM(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_7_EBX_[11]; }
    static bool AVX512F(void) { return CPU_Rep.f_7_EBX_[16]; }
    static bool RDSEED(void) { return CPU_Rep.f_7_EBX_[18]; }
    static bool ADX(void) { return CPU_Rep.f_7_EBX_[19]; }
    static bool AVX512PF(void) { return CPU_Rep.f_7_EBX_[26]; }
    static bool AVX512ER(void) { return CPU_Rep.f_7_EBX_[27]; }
    static bool AVX512CD(void) { return CPU_Rep.f_7_EBX_[28]; }
    static bool SHA(void) { return CPU_Rep.f_7_EBX_[29]; }

    static bool PREFETCHWT1(void) { return CPU_Rep.f_7_ECX_[0]; }

    static bool LAHF(void) { return CPU_Rep.f_81_ECX_[0]; }
    static bool LZCNT(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_81_ECX_[5]; }
    static bool ABM(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[5]; }
    static bool SSE4a(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[6]; }
    static bool XOP(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[11]; }
    static bool TBM(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[21]; }

    static bool SYSCALL(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_81_EDX_[11]; }
    static bool MMXEXT(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_EDX_[22]; }
    static bool RDTSCP(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_81_EDX_[27]; }
    static bool _3DNOWEXT(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_EDX_[30]; }
    static bool _3DNOW(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_EDX_[31]; }

private:
    static const InstructionSet_Internal CPU_Rep;

    class InstructionSet_Internal
    {
    public:
        InstructionSet_Internal()
            : nIds_{ 0 },
            nExIds_{ 0 },
            isIntel_{ false },
            isAMD_{ false },
            f_1_ECX_{ 0 },
            f_1_EDX_{ 0 },
            f_7_EBX_{ 0 },
            f_7_ECX_{ 0 },
            f_81_ECX_{ 0 },
            f_81_EDX_{ 0 },
            data_{},
            extdata_{}
        {
            //int cpuInfo[4] = {-1};
            std::array<int, 4> cpui;

            // Calling __cpuid with 0x0 as the function_id argument
            // gets the number of the highest valid function ID.
            __cpuid(cpui.data(), 0);
            nIds_ = cpui[0];

            for (int i = 0; i <= nIds_; ++i)
            {
                __cpuidex(cpui.data(), i, 0);
                data_.push_back(cpui);
            }

            // Capture vendor string
            char vendor[0x20];
            memset(vendor, 0, sizeof(vendor));
            *reinterpret_cast<int*>(vendor) = data_[0][1];
            *reinterpret_cast<int*>(vendor + 4) = data_[0][3];
            *reinterpret_cast<int*>(vendor + 8) = data_[0][2];
            vendor_ = vendor;
            if (vendor_ == "GenuineIntel")
            {
                isIntel_ = true;
            }
            else if (vendor_ == "AuthenticAMD")
            {
                isAMD_ = true;
            }

            // load bitset with flags for function 0x00000001
            if (nIds_ >= 1)
            {
                f_1_ECX_ = data_[1][2];
                f_1_EDX_ = data_[1][3];
            }

            // load bitset with flags for function 0x00000007
            if (nIds_ >= 7)
            {
                f_7_EBX_ = data_[7][1];
                f_7_ECX_ = data_[7][2];
            }

            // Calling __cpuid with 0x80000000 as the function_id argument
            // gets the number of the highest valid extended ID.
            __cpuid(cpui.data(), 0x80000000);
            nExIds_ = cpui[0];

            char brand[0x40];
            memset(brand, 0, sizeof(brand));

            for (int i = 0x80000000; i <= nExIds_; ++i)
            {
                __cpuidex(cpui.data(), i, 0);
                extdata_.push_back(cpui);
            }

            // load bitset with flags for function 0x80000001
            if (nExIds_ >= 0x80000001)
            {
                f_81_ECX_ = extdata_[1][2];
                f_81_EDX_ = extdata_[1][3];
            }

            // Interpret CPU brand string if reported
            if (nExIds_ >= 0x80000004)
            {
                memcpy(brand, extdata_[2].data(), sizeof(cpui));
                memcpy(brand + 16, extdata_[3].data(), sizeof(cpui));
                memcpy(brand + 32, extdata_[4].data(), sizeof(cpui));
                brand_ = brand;
            }
        };

        int nIds_;
        int nExIds_;
        std::string vendor_;
        std::string brand_;
        bool isIntel_;
        bool isAMD_;
        std::bitset<32> f_1_ECX_;
        std::bitset<32> f_1_EDX_;
        std::bitset<32> f_7_EBX_;
        std::bitset<32> f_7_ECX_;
        std::bitset<32> f_81_ECX_;
        std::bitset<32> f_81_EDX_;
        std::vector<std::array<int, 4>> data_;
        std::vector<std::array<int, 4>> extdata_;
    };
};

// Initialize static member data
const InstructionSet::InstructionSet_Internal InstructionSet::CPU_Rep;

// Print out supported instruction set extensions
int main()
{
    auto& outstream = std::cout;

    auto support_message = [&outstream](std::string isa_feature, bool is_supported) {
        outstream << isa_feature << (is_supported ? " supported" : " not supported") << std::endl;
    };

    std::cout << InstructionSet::Vendor() << std::endl;
    std::cout << InstructionSet::Brand() << std::endl;

    support_message("3DNOW",       InstructionSet::_3DNOW());
    support_message("3DNOWEXT",    InstructionSet::_3DNOWEXT());
    support_message("ABM",         InstructionSet::ABM());
    support_message("ADX",         InstructionSet::ADX());
    support_message("AES",         InstructionSet::AES());
    support_message("AVX",         InstructionSet::AVX());
    support_message("AVX2",        InstructionSet::AVX2());
    support_message("AVX512CD",    InstructionSet::AVX512CD());
    support_message("AVX512ER",    InstructionSet::AVX512ER());
    support_message("AVX512F",     InstructionSet::AVX512F());
    support_message("AVX512PF",    InstructionSet::AVX512PF());
    support_message("BMI1",        InstructionSet::BMI1());
    support_message("BMI2",        InstructionSet::BMI2());
    support_message("CLFSH",       InstructionSet::CLFSH());
    support_message("CMPXCHG16B",  InstructionSet::CMPXCHG16B());
    support_message("CX8",         InstructionSet::CX8());
    support_message("ERMS",        InstructionSet::ERMS());
    support_message("F16C",        InstructionSet::F16C());
    support_message("FMA",         InstructionSet::FMA());
    support_message("FSGSBASE",    InstructionSet::FSGSBASE());
    support_message("FXSR",        InstructionSet::FXSR());
    support_message("HLE",         InstructionSet::HLE());
    support_message("INVPCID",     InstructionSet::INVPCID());
    support_message("LAHF",        InstructionSet::LAHF());
    support_message("LZCNT",       InstructionSet::LZCNT());
    support_message("MMX",         InstructionSet::MMX());
    support_message("MMXEXT",      InstructionSet::MMXEXT());
    support_message("MONITOR",     InstructionSet::MONITOR());
    support_message("MOVBE",       InstructionSet::MOVBE());
    support_message("MSR",         InstructionSet::MSR());
    support_message("OSXSAVE",     InstructionSet::OSXSAVE());
    support_message("PCLMULQDQ",   InstructionSet::PCLMULQDQ());
    support_message("POPCNT",      InstructionSet::POPCNT());
    support_message("PREFETCHWT1", InstructionSet::PREFETCHWT1());
    support_message("RDRAND",      InstructionSet::RDRAND());
    support_message("RDSEED",      InstructionSet::RDSEED());
    support_message("RDTSCP",      InstructionSet::RDTSCP());
    support_message("RTM",         InstructionSet::RTM());
    support_message("SEP",         InstructionSet::SEP());
    support_message("SHA",         InstructionSet::SHA());
    support_message("SSE",         InstructionSet::SSE());
    support_message("SSE2",        InstructionSet::SSE2());
    support_message("SSE3",        InstructionSet::SSE3());
    support_message("SSE4.1",      InstructionSet::SSE41());
    support_message("SSE4.2",      InstructionSet::SSE42());
    support_message("SSE4a",       InstructionSet::SSE4a());
    support_message("SSSE3",       InstructionSet::SSSE3());
    support_message("SYSCALL",     InstructionSet::SYSCALL());
    support_message("TBM",         InstructionSet::TBM());
    support_message("XOP",         InstructionSet::XOP());
    support_message("XSAVE",       InstructionSet::XSAVE());
}
GenuineIntel
        Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz
3DNOW not supported
3DNOWEXT not supported
ABM not supported
ADX not supported
AES supported
AVX supported
AVX2 not supported
AVX512CD not supported
AVX512ER not supported
AVX512F not supported
AVX512PF not supported
BMI1 not supported
BMI2 not supported
CLFSH supported
CMPXCHG16B supported
CX8 supported
ERMS not supported
F16C not supported
FMA not supported
FSGSBASE not supported
FXSR supported
HLE not supported
INVPCID not supported
LAHF supported
LZCNT not supported
MMX supported
MMXEXT not supported
MONITOR not supported
MOVBE not supported
MSR supported
OSXSAVE supported
PCLMULQDQ supported
POPCNT supported
PREFETCHWT1 not supported
RDRAND not supported
RDSEED not supported
RDTSCP supported
RTM not supported
SEP supported
SHA not supported
SSE supported
SSE2 supported
SSE3 supported
SSE4.1 supported
SSE4.2 supported
SSE4a not supported
SSSE3 supported
SYSCALL supported
TBM not supported
XOP not supported
XSAVE supported

END Khusus Microsoft

Lihat juga

Intrinsik pengkompilasi