Bagikan melalui


Panduan: Menggunakan Runtime Konkurensi dalam Aplikasi yang Diaktifkan COM

Dokumen ini menunjukkan cara menggunakan Runtime Konkurensi dalam aplikasi yang menggunakan Model Objek Komponen (COM).

Prasyarat

Baca dokumen berikut sebelum Anda memulai panduan ini:

Untuk informasi selengkapnya tentang COM, lihat Model Objek Komponen (COM).

Mengelola Masa Pakai Pustaka COM

Meskipun penggunaan COM dengan Runtime Konkurensi mengikuti prinsip yang sama dengan mekanisme konkurensi lainnya, panduan berikut dapat membantu Anda menggunakan pustaka ini bersama-sama secara efektif.

  • Utas harus memanggil CoInitializeEx sebelum menggunakan pustaka COM.

  • Utas dapat memanggil CoInitializeEx beberapa kali selama memberikan argumen yang sama untuk setiap panggilan.

  • Untuk setiap panggilan ke CoInitializeEx, utas juga harus memanggil CoUninitialize. Dengan kata lain, panggilan ke CoInitializeEx dan CoUninitialize harus seimbang.

  • Untuk beralih dari satu apartemen utas ke yang lain, utas harus sepenuhnya membebaskan pustaka COM sebelum memanggil dengan spesifikasi utas CoInitializeEx baru.

Prinsip COM lainnya berlaku saat Anda menggunakan COM dengan Concurrency Runtime. Misalnya, aplikasi yang membuat objek di apartemen berulir tunggal (STA) dan marshal yang objeknya ke apartemen lain juga harus memberikan perulangan pesan untuk memproses pesan masuk. Ingat juga bahwa marshaling objek antar apartemen dapat mengurangi performa.

Menggunakan COM dengan Pustaka Pola Paralel

Saat Anda menggunakan COM dengan komponen di Pustaka Pola Paralel (PPL), misalnya, grup tugas atau algoritma paralel, panggil CoInitializeEx sebelum Anda menggunakan pustaka COM selama setiap tugas atau perulangan, dan panggil CoUninitialize sebelum setiap tugas atau perulangan selesai. Contoh berikut menunjukkan cara mengelola masa pakai pustaka COM dengan objek konkurensi::structured_task_group .

structured_task_group tasks;

// Create and run a task.
auto task = make_task([] {
   // Initialize the COM library on the current thread.
   CoInitializeEx(NULL, COINIT_MULTITHREADED);

   // TODO: Perform task here.

   // Free the COM library.
   CoUninitialize();
});   
tasks.run(task);

// TODO: Run additional tasks here.

// Wait for the tasks to finish.
tasks.wait();

Anda harus memastikan bahwa pustaka COM dibebaskan dengan benar ketika tugas atau algoritma paralel dibatalkan atau ketika isi tugas melemparkan pengecualian. Untuk menjamin bahwa tugas memanggil CoUninitialize sebelum keluar, gunakan try-finally blok atau pola Resource Acquisition Is Initialization (RAII). Contoh berikut menggunakan try-finally blok untuk membebaskan pustaka COM saat tugas selesai atau dibatalkan, atau ketika pengecualian dilemparkan.

structured_task_group tasks;

// Create and run a task.
auto task = make_task([] {
   bool coinit = false;            
   __try {
      // Initialize the COM library on the current thread.
      CoInitializeEx(NULL, COINIT_MULTITHREADED);
      coinit = true;

      // TODO: Perform task here.
   }
   __finally {
      // Free the COM library.
      if (coinit)
         CoUninitialize();
   }      
});
tasks.run(task);

// TODO: Run additional tasks here.

// Wait for the tasks to finish.
tasks.wait();

Contoh berikut menggunakan pola RAII untuk menentukan CCoInitializer kelas, yang mengelola masa pakai pustaka COM dalam cakupan tertentu.

// An exception-safe wrapper class that manages the lifetime 
// of the COM library in a given scope.
class CCoInitializer
{
public:
   explicit CCoInitializer(DWORD dwCoInit = COINIT_APARTMENTTHREADED)
      : _coinitialized(false)
   {
      // Initialize the COM library on the current thread.
      HRESULT hr = CoInitializeEx(NULL, dwCoInit);
      if (SUCCEEDED(hr))
         _coinitialized = true;
   }
   ~CCoInitializer()
   {
      // Free the COM library.
      if (_coinitialized)
         CoUninitialize();
   }
private:
   // Flags whether COM was properly initialized.
   bool _coinitialized;

   // Hide copy constructor and assignment operator.
   CCoInitializer(const CCoInitializer&);
   CCoInitializer& operator=(const CCoInitializer&);
};

Anda dapat menggunakan CCoInitializer kelas untuk secara otomatis membebaskan pustaka COM saat tugas keluar, sebagai berikut.

structured_task_group tasks;

// Create and run a task.
auto task = make_task([] {
   // Enable COM for the lifetime of the task.
   CCoInitializer coinit(COINIT_MULTITHREADED);

   // TODO: Perform task here.

   // The CCoInitializer object frees the COM library
   // when the task exits.
});
tasks.run(task);

// TODO: Run additional tasks here.

// Wait for the tasks to finish.
tasks.wait();

Untuk informasi selengkapnya tentang pembatalan di Runtime Konkurensi, lihat Pembatalan di PPL.

Menggunakan COM dengan Agen Asinkron

Saat Anda menggunakan COM dengan agen asinkron, panggil CoInitializeEx sebelum Anda menggunakan pustaka COM dalam metode konkurensi::agent::run untuk agen Anda. Kemudian panggil CoUninitialize sebelum run metode kembali. Jangan gunakan rutinitas manajemen COM di konstruktor atau destruktor agen Anda, dan jangan mengambil alih konkurensi::agent::start atau konkurensi::agent::d satu metode karena metode ini dipanggil dari utas yang berbeda dari run metode .

Contoh berikut menunjukkan kelas agen dasar, bernama CCoAgent, yang mengelola pustaka COM dalam run metode .

class CCoAgent : public agent
{
protected:
   void run()
   {
      // Initialize the COM library on the current thread.
      CoInitializeEx(NULL, COINIT_MULTITHREADED);

      // TODO: Perform work here.
      
      // Free the COM library.
      CoUninitialize();

      // Set the agent to the finished state.
      done();
   }
};

Contoh lengkap disediakan nanti dalam panduan ini.

Menggunakan COM dengan Tugas Ringan

Dokumen Task Scheduler menjelaskan peran tugas ringan dalam Concurrency Runtime. Anda dapat menggunakan COM dengan tugas ringan seperti yang Anda lakukan dengan rutinitas utas apa pun yang Anda teruskan ke CreateThread fungsi di Windows API. Hal ini ditunjukkan di contoh berikut.

// A basic lightweight task that you schedule directly from a 
// Scheduler or ScheduleGroup object.
void ThreadProc(void* data)
{
   // Initialize the COM library on the current thread.
   CoInitializeEx(NULL, COINIT_MULTITHREADED);

   // TODO: Perform work here.
      
   // Free the COM library.
   CoUninitialize();
}

Contoh Aplikasi yang Diaktifkan COM

Bagian ini menunjukkan aplikasi lengkap berkemampuan COM yang menggunakan IScriptControl antarmuka untuk menjalankan skrip yang menghitung nomor Fibonacci ke-n. Contoh ini pertama-tama memanggil skrip dari utas utama, lalu menggunakan PPL dan agen untuk memanggil skrip secara bersamaan.

Pertimbangkan fungsi pembantu berikut, RunScriptProcedure, yang memanggil prosedur dalam IScriptControl objek.

// Calls a procedure in an IScriptControl object.
template<size_t ArgCount>
_variant_t RunScriptProcedure(IScriptControlPtr pScriptControl, 
   _bstr_t& procedureName, array<_variant_t, ArgCount>& arguments)
{
   // Create a 1-dimensional, 0-based safe array.
   SAFEARRAYBOUND rgsabound[]  = { ArgCount, 0 };
   CComSafeArray<VARIANT> sa(rgsabound, 1U);

   // Copy the arguments to the safe array.
   LONG lIndex = 0;
   for_each(begin(arguments), end(arguments), [&](_variant_t& arg) {
      HRESULT hr = sa.SetAt(lIndex, arg);
      if (FAILED(hr))
         throw hr;
      ++lIndex;
   });

   //  Call the procedure in the script.
   return pScriptControl->Run(procedureName, &sa.m_psa);
}

Fungsi ini wmain membuat objek, menambahkan kode skrip ke dalamnya yang menghitung nomor Fibonacci ke-n, lalu memanggil fungsi untuk menjalankan skrip tersebut RunScriptProcedureIScriptControl.

int wmain()
{
   HRESULT hr;

   // Enable COM on this thread for the lifetime of the program.   
   CCoInitializer coinit(COINIT_MULTITHREADED);
     
   // Create the script control.
   IScriptControlPtr pScriptControl(__uuidof(ScriptControl));
   
   // Set script control properties.
   pScriptControl->Language = "JScript";
   pScriptControl->AllowUI = TRUE;

   // Add script code that computes the nth Fibonacci number.
   hr = pScriptControl->AddCode(
      "function fib(n) { if (n<2) return n; else return fib(n-1) + fib(n-2); }" );
   if (FAILED(hr))
      return hr;

   // Test the script control by computing the 15th Fibonacci number.
   wcout << endl << L"Main Thread:" << endl;
   LONG lValue = 15;
   array<_variant_t, 1> args = { _variant_t(lValue) };
   _variant_t result = RunScriptProcedure(
      pScriptControl, 
      _bstr_t("fib"), 
      args);
   // Print the result.
   wcout << L"fib(" << lValue << L") = " << result.lVal << endl;

   return S_OK;
}

Memanggil Skrip dari PPL

Fungsi berikut, ParallelFibonacci, menggunakan algoritma konkurensi::p arallel_for untuk memanggil skrip secara paralel. Fungsi ini menggunakan CCoInitializer kelas untuk mengelola masa pakai pustaka COM selama setiap iterasi tugas.

// Computes multiple Fibonacci numbers in parallel by using 
// the parallel_for algorithm.
HRESULT ParallelFibonacci(IScriptControlPtr pScriptControl)
{
   try {
      parallel_for(10L, 20L, [&pScriptControl](LONG lIndex) 
      {
         // Enable COM for the lifetime of the task.
         CCoInitializer coinit(COINIT_MULTITHREADED);

         // Call the helper function to run the script procedure.
         array<_variant_t, 1> args = { _variant_t(lIndex) };
         _variant_t result = RunScriptProcedure(
            pScriptControl, 
            _bstr_t("fib"), 
            args);
         
         // Print the result.
         wstringstream ss;         
         ss << L"fib(" << lIndex << L") = " << result.lVal << endl;
         wcout << ss.str();
      });
   }
   catch (HRESULT hr) {
      return hr;
   }
   return S_OK;
}

Untuk menggunakan ParallelFibonacci fungsi dengan contoh, tambahkan kode berikut sebelum wmain fungsi kembali.

// Use the parallel_for algorithm to compute multiple 
// Fibonacci numbers in parallel.
wcout << endl << L"Parallel Fibonacci:" << endl;
if (FAILED(hr = ParallelFibonacci(pScriptControl)))
   return hr;

Memanggil Skrip dari Agen

Contoh berikut menunjukkan FibonacciScriptAgent kelas , yang memanggil prosedur skrip untuk menghitung nomor Fibonacci ke-n. Kelas FibonacciScriptAgent menggunakan passing pesan untuk menerima, dari program utama, memasukkan nilai ke fungsi skrip. Metode ini run mengelola masa pakai pustaka COM di seluruh tugas.

// A basic agent that calls a script procedure to compute the 
// nth Fibonacci number.
class FibonacciScriptAgent : public agent
{
public:
   FibonacciScriptAgent(IScriptControlPtr pScriptControl, ISource<LONG>& source)
      : _pScriptControl(pScriptControl)
      , _source(source) { }

public:
   // Retrieves the result code.
   HRESULT GetHRESULT() 
   {
      return receive(_result);
   }

protected:
   void run()
   {
      // Initialize the COM library on the current thread.
      CoInitializeEx(NULL, COINIT_MULTITHREADED);

      // Read values from the message buffer until 
      // we receive the sentinel value.      
      LONG lValue;
      while ((lValue = receive(_source)) != Sentinel)
      {
         try {
            // Call the helper function to run the script procedure.
            array<_variant_t, 1> args = { _variant_t(lValue) };
            _variant_t result = RunScriptProcedure(
               _pScriptControl, 
               _bstr_t("fib"), 
               args);
            
            // Print the result.
            wstringstream ss;         
            ss << L"fib(" << lValue << L") = " << result.lVal << endl;
            wcout << ss.str();
         }
         catch (HRESULT hr) {
            send(_result, hr);
            break;    
         }
      }

      // Set the result code (does nothing if a value is already set).
      send(_result, S_OK);

      // Free the COM library.
      CoUninitialize();

      // Set the agent to the finished state.
      done();
   }

public:
   // Signals the agent to terminate.
   static const LONG Sentinel = 0L;

private:
   // The IScriptControl object that contains the script procedure.
   IScriptControlPtr _pScriptControl;
   // Message buffer from which to read arguments to the 
   // script procedure.
   ISource<LONG>& _source;
   // The result code for the overall operation.
   single_assignment<HRESULT> _result;
};

Fungsi berikut, AgentFibonacci, membuat beberapa FibonacciScriptAgent objek dan menggunakan passing pesan untuk mengirim beberapa nilai input ke objek tersebut.

// Computes multiple Fibonacci numbers in parallel by using 
// asynchronous agents.
HRESULT AgentFibonacci(IScriptControlPtr pScriptControl)
{
   // Message buffer to hold arguments to the script procedure.
   unbounded_buffer<LONG> values;

   // Create several agents.
   array<agent*, 3> agents = 
   {
      new FibonacciScriptAgent(pScriptControl, values),
      new FibonacciScriptAgent(pScriptControl, values),
      new FibonacciScriptAgent(pScriptControl, values),
   };

   // Start each agent.
   for_each(begin(agents), end(agents), [](agent* a) {
      a->start();
   });

   // Send a few values to the agents.
   send(values, 30L);
   send(values, 22L);
   send(values, 10L);
   send(values, 12L);
   // Send a sentinel value to each agent.
   for_each(begin(agents), end(agents), [&values](agent*) {
      send(values, FibonacciScriptAgent::Sentinel);
   });

   // Wait for all agents to finish.
   agent::wait_for_all(3, &agents[0]);

   // Determine the result code.
   HRESULT hr = S_OK;
   for_each(begin(agents), end(agents), [&hr](agent* a) {
      HRESULT hrTemp;
      if (FAILED(hrTemp = 
         reinterpret_cast<FibonacciScriptAgent*>(a)->GetHRESULT()))
      {
         hr = hrTemp;
      }
   });

   // Clean up.
   for_each(begin(agents), end(agents), [](agent* a) {
      delete a;
   });

   return hr;
}

Untuk menggunakan AgentFibonacci fungsi dengan contoh, tambahkan kode berikut sebelum wmain fungsi kembali.

// Use asynchronous agents to compute multiple 
// Fibonacci numbers in parallel.
wcout << endl << L"Agent Fibonacci:" << endl;
if (FAILED(hr = AgentFibonacci(pScriptControl)))
   return hr;

Contoh Lengkap

Kode berikut menunjukkan contoh lengkap, yang menggunakan algoritma paralel dan agen asinkron untuk memanggil prosedur skrip yang menghitung nomor Fibonacci.

// parallel-scripts.cpp
// compile with: /EHsc 

#include <agents.h>
#include <ppl.h>
#include <array>
#include <sstream>
#include <iostream>
#include <atlsafe.h>

// TODO: Change this path if necessary.
#import "C:\windows\system32\msscript.ocx"

using namespace concurrency;
using namespace MSScriptControl;
using namespace std;

// An exception-safe wrapper class that manages the lifetime 
// of the COM library in a given scope.
class CCoInitializer
{
public:
   explicit CCoInitializer(DWORD dwCoInit = COINIT_APARTMENTTHREADED)
      : _coinitialized(false)
   {
      // Initialize the COM library on the current thread.
      HRESULT hr = CoInitializeEx(NULL, dwCoInit);
      if (FAILED(hr))
         throw hr;
      _coinitialized = true;
   }
   ~CCoInitializer()
   {
      // Free the COM library.
      if (_coinitialized)
         CoUninitialize();
   }
private:
   // Flags whether COM was properly initialized.
   bool _coinitialized;

   // Hide copy constructor and assignment operator.
   CCoInitializer(const CCoInitializer&);
   CCoInitializer& operator=(const CCoInitializer&);
};

// Calls a procedure in an IScriptControl object.
template<size_t ArgCount>
_variant_t RunScriptProcedure(IScriptControlPtr pScriptControl, 
   _bstr_t& procedureName, array<_variant_t, ArgCount>& arguments)
{
   // Create a 1-dimensional, 0-based safe array.
   SAFEARRAYBOUND rgsabound[]  = { ArgCount, 0 };
   CComSafeArray<VARIANT> sa(rgsabound, 1U);

   // Copy the arguments to the safe array.
   LONG lIndex = 0;
   for_each(begin(arguments), end(arguments), [&](_variant_t& arg) {
      HRESULT hr = sa.SetAt(lIndex, arg);
      if (FAILED(hr))
         throw hr;
      ++lIndex;
   });

   //  Call the procedure in the script.
   return pScriptControl->Run(procedureName, &sa.m_psa);
}

// Computes multiple Fibonacci numbers in parallel by using 
// the parallel_for algorithm.
HRESULT ParallelFibonacci(IScriptControlPtr pScriptControl)
{
   try {
      parallel_for(10L, 20L, [&pScriptControl](LONG lIndex) 
      {
         // Enable COM for the lifetime of the task.
         CCoInitializer coinit(COINIT_MULTITHREADED);

         // Call the helper function to run the script procedure.
         array<_variant_t, 1> args = { _variant_t(lIndex) };
         _variant_t result = RunScriptProcedure(
            pScriptControl, 
            _bstr_t("fib"), 
            args);
         
         // Print the result.
         wstringstream ss;         
         ss << L"fib(" << lIndex << L") = " << result.lVal << endl;
         wcout << ss.str();
      });
   }
   catch (HRESULT hr) {
      return hr;
   }
   return S_OK;
}

// A basic agent that calls a script procedure to compute the 
// nth Fibonacci number.
class FibonacciScriptAgent : public agent
{
public:
   FibonacciScriptAgent(IScriptControlPtr pScriptControl, ISource<LONG>& source)
      : _pScriptControl(pScriptControl)
      , _source(source) { }

public:
   // Retrieves the result code.
   HRESULT GetHRESULT() 
   {
      return receive(_result);
   }

protected:
   void run()
   {
      // Initialize the COM library on the current thread.
      CoInitializeEx(NULL, COINIT_MULTITHREADED);

      // Read values from the message buffer until 
      // we receive the sentinel value.      
      LONG lValue;
      while ((lValue = receive(_source)) != Sentinel)
      {
         try {
            // Call the helper function to run the script procedure.
            array<_variant_t, 1> args = { _variant_t(lValue) };
            _variant_t result = RunScriptProcedure(
               _pScriptControl, 
               _bstr_t("fib"), 
               args);
            
            // Print the result.
            wstringstream ss;         
            ss << L"fib(" << lValue << L") = " << result.lVal << endl;
            wcout << ss.str();
         }
         catch (HRESULT hr) {
            send(_result, hr);
            break;    
         }
      }

      // Set the result code (does nothing if a value is already set).
      send(_result, S_OK);

      // Free the COM library.
      CoUninitialize();

      // Set the agent to the finished state.
      done();
   }

public:
   // Signals the agent to terminate.
   static const LONG Sentinel = 0L;

private:
   // The IScriptControl object that contains the script procedure.
   IScriptControlPtr _pScriptControl;
   // Message buffer from which to read arguments to the 
   // script procedure.
   ISource<LONG>& _source;
   // The result code for the overall operation.
   single_assignment<HRESULT> _result;
};

// Computes multiple Fibonacci numbers in parallel by using 
// asynchronous agents.
HRESULT AgentFibonacci(IScriptControlPtr pScriptControl)
{
   // Message buffer to hold arguments to the script procedure.
   unbounded_buffer<LONG> values;

   // Create several agents.
   array<agent*, 3> agents = 
   {
      new FibonacciScriptAgent(pScriptControl, values),
      new FibonacciScriptAgent(pScriptControl, values),
      new FibonacciScriptAgent(pScriptControl, values),
   };

   // Start each agent.
   for_each(begin(agents), end(agents), [](agent* a) {
      a->start();
   });

   // Send a few values to the agents.
   send(values, 30L);
   send(values, 22L);
   send(values, 10L);
   send(values, 12L);
   // Send a sentinel value to each agent.
   for_each(begin(agents), end(agents), [&values](agent*) {
      send(values, FibonacciScriptAgent::Sentinel);
   });

   // Wait for all agents to finish.
   agent::wait_for_all(3, &agents[0]);

   // Determine the result code.
   HRESULT hr = S_OK;
   for_each(begin(agents), end(agents), [&hr](agent* a) {
      HRESULT hrTemp;
      if (FAILED(hrTemp = 
         reinterpret_cast<FibonacciScriptAgent*>(a)->GetHRESULT()))
      {
         hr = hrTemp;
      }
   });

   // Clean up.
   for_each(begin(agents), end(agents), [](agent* a) {
      delete a;
   });

   return hr;
}

int wmain()
{
   HRESULT hr;

   // Enable COM on this thread for the lifetime of the program.   
   CCoInitializer coinit(COINIT_MULTITHREADED);
     
   // Create the script control.
   IScriptControlPtr pScriptControl(__uuidof(ScriptControl));
   
   // Set script control properties.
   pScriptControl->Language = "JScript";
   pScriptControl->AllowUI = TRUE;

   // Add script code that computes the nth Fibonacci number.
   hr = pScriptControl->AddCode(
      "function fib(n) { if (n<2) return n; else return fib(n-1) + fib(n-2); }" );
   if (FAILED(hr))
      return hr;

   // Test the script control by computing the 15th Fibonacci number.
   wcout << L"Main Thread:" << endl;
   long n = 15;
   array<_variant_t, 1> args = { _variant_t(n) };
   _variant_t result = RunScriptProcedure(
      pScriptControl, 
      _bstr_t("fib"), 
      args);
   // Print the result.
   wcout << L"fib(" << n << L") = " << result.lVal << endl;

   // Use the parallel_for algorithm to compute multiple 
   // Fibonacci numbers in parallel.
   wcout << endl << L"Parallel Fibonacci:" << endl;
   if (FAILED(hr = ParallelFibonacci(pScriptControl)))
      return hr;

   // Use asynchronous agents to compute multiple 
   // Fibonacci numbers in parallel.
   wcout << endl << L"Agent Fibonacci:" << endl;
   if (FAILED(hr = AgentFibonacci(pScriptControl)))
      return hr;

   return S_OK;
}

Contohnya menghasilkan output sampel berikut.

Main Thread:
fib(15) = 610

Parallel Fibonacci:
fib(15) = 610
fib(10) = 55
fib(16) = 987
fib(18) = 2584
fib(11) = 89
fib(17) = 1597
fib(19) = 4181
fib(12) = 144
fib(13) = 233
fib(14) = 377

Agent Fibonacci:
fib(30) = 832040
fib(22) = 17711
fib(10) = 55
fib(12) = 144

Mengompilasi Kode

Salin kode contoh dan tempelkan dalam proyek Visual Studio, atau tempelkan dalam file yang diberi nama parallel-scripts.cpp lalu jalankan perintah berikut di jendela Prompt Perintah Visual Studio.

cl.exe /EHsc parallel-scripts.cpp /link ole32.lib

Baca juga

Panduan Runtime Konkurensi
Paralelisme Tugas
Algoritma Paralel
Agen Asinkron
Penanganan Pengecualian
Pembatalan di PPL
Tugas Microsoft Azure Scheduler