Catatan
Akses ke halaman ini memerlukan otorisasi. Anda dapat mencoba masuk atau mengubah direktori.
Akses ke halaman ini memerlukan otorisasi. Anda dapat mencoba mengubah direktori.
Fungsi
abs
Menghitung modulus bilangan kompleks.
template <class Type>
Type abs(const complex<Type>& complexNum);
Parameter
complexNum
Bilangan kompleks yang modulusnya akan ditentukan.
Tampilkan Nilai
Modulus bilangan kompleks.
Keterangan
Modulus bilangan kompleks adalah ukuran panjang vektor yang mewakili bilangan kompleks. Modulus bilangan kompleks a + bi adalah akar kuadrat (2 + b2), ditulis |a + bi|. Norma bilangan kompleks a + bi adalah (2 + b2). Norma bilangan kompleks adalah kuadrat modulusnya.
Contoh
// complex_abs.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
// Complex numbers can be entered in polar form with
// modulus and argument parameter inputs but are
// stored in Cartesian form as real & imag coordinates
complex <double> c1 ( polar ( 5.0 ) ); // Default argument = 0
complex <double> c2 ( polar ( 5.0 , pi / 6 ) );
complex <double> c3 ( polar ( 5.0 , 13 * pi / 6 ) );
cout << "c1 = polar ( 5.0 ) = " << c1 << endl;
cout << "c2 = polar ( 5.0 , pi / 6 ) = " << c2 << endl;
cout << "c3 = polar ( 5.0 , 13 * pi / 6 ) = " << c3 << endl;
// The modulus and argument of a complex number can be recovered
// using abs & arg member functions
double absc1 = abs ( c1 );
double argc1 = arg ( c1 );
cout << "The modulus of c1 is recovered from c1 using: abs ( c1 ) = "
<< absc1 << endl;
cout << "Argument of c1 is recovered from c1 using:\n arg ( c1 ) = "
<< argc1 << " radians, which is " << argc1 * 180 / pi
<< " degrees." << endl;
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is recovered from c2 using: abs ( c2 ) = "
<< absc2 << endl;
cout << "Argument of c2 is recovered from c2 using:\n arg ( c2 ) = "
<< argc2 << " radians, which is " << argc2 * 180 / pi
<< " degrees." << endl;
// Testing if the principal angles of c2 and c3 are the same
if ( (arg ( c2 ) <= ( arg ( c3 ) + .00000001) ) ||
(arg ( c2 ) >= ( arg ( c3 ) - .00000001) ) )
cout << "The complex numbers c2 & c3 have the "
<< "same principal arguments."<< endl;
else
cout << "The complex numbers c2 & c3 don't have the "
<< "same principal arguments." << endl;
}
c1 = polar ( 5.0 ) = (5,0)
c2 = polar ( 5.0 , pi / 6 ) = (4.33013,2.5)
c3 = polar ( 5.0 , 13 * pi / 6 ) = (4.33013,2.5)
The modulus of c1 is recovered from c1 using: abs ( c1 ) = 5
Argument of c1 is recovered from c1 using:
arg ( c1 ) = 0 radians, which is 0 degrees.
The modulus of c2 is recovered from c2 using: abs ( c2 ) = 5
Argument of c2 is recovered from c2 using:
arg ( c2 ) = 0.523599 radians, which is 30 degrees.
The complex numbers c2 & c3 have the same principal arguments.
acos
template<class T> complex<T> acos(const complex<T>&);
acosh
template<class T> complex<T> acosh(const complex<T>&);
Arg
Mengekstrak argumen dari bilangan kompleks.
template <class Type>
Type arg(const complex<Type>& complexNum);
Parameter
complexNum
Bilangan kompleks yang argumennya akan ditentukan.
Tampilkan Nilai
Argumen bilangan kompleks.
Keterangan
Argumen adalah sudut yang dihasilkan vektor kompleks dengan sumbu nyata positif di bidang kompleks. Untuk bilangan kompleks a + bi, argumen sama dengan arctan(b/a). Sudut memiliki arti positif ketika diukur dalam arah berlawanan arah jarum jam dari sumbu nyata positif dan rasa negatif ketika diukur ke arah searah jarum jam. Nilai utama lebih besar dari -pi dan kurang dari atau sama dengan +pi.
Contoh
// complex_arg.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
// Complex numbers can be entered in polar form with
// modulus and argument parameter inputs but are
// stored in Cartesian form as real & imag coordinates
complex <double> c1 ( polar ( 5.0 ) ); // Default argument = 0
complex <double> c2 ( polar ( 5.0 , pi / 6 ) );
complex <double> c3 ( polar ( 5.0 , 13 * pi / 6 ) );
cout << "c1 = polar ( 5.0 ) = " << c1 << endl;
cout << "c2 = polar ( 5.0 , pi / 6 ) = " << c2 << endl;
cout << "c3 = polar ( 5.0 , 13 * pi / 6 ) = " << c3 << endl;
// The modulus and argument of a complex number can be rcovered
// using abs & arg member functions
double absc1 = abs ( c1 );
double argc1 = arg ( c1 );
cout << "The modulus of c1 is recovered from c1 using: abs ( c1 ) = "
<< absc1 << endl;
cout << "Argument of c1 is recovered from c1 using:\n arg ( c1 ) = "
<< argc1 << " radians, which is " << argc1 * 180 / pi
<< " degrees." << endl;
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is recovered from c2 using: abs ( c2 ) = "
<< absc2 << endl;
cout << "Argument of c2 is recovered from c2 using:\n arg ( c2 ) = "
<< argc2 << " radians, which is " << argc2 * 180 / pi
<< " degrees." << endl;
// Testing if the principal angles of c2 and c3 are the same
if ( (arg ( c2 ) <= ( arg ( c3 ) + .00000001) ) ||
(arg ( c2 ) >= ( arg ( c3 ) - .00000001) ) )
cout << "The complex numbers c2 & c3 have the "
<< "same principal arguments."<< endl;
else
cout << "The complex numbers c2 & c3 don't have the "
<< "same principal arguments." << endl;
}
c1 = polar ( 5.0 ) = (5,0)
c2 = polar ( 5.0 , pi / 6 ) = (4.33013,2.5)
c3 = polar ( 5.0 , 13 * pi / 6 ) = (4.33013,2.5)
The modulus of c1 is recovered from c1 using: abs ( c1 ) = 5
Argument of c1 is recovered from c1 using:
arg ( c1 ) = 0 radians, which is 0 degrees.
The modulus of c2 is recovered from c2 using: abs ( c2 ) = 5
Argument of c2 is recovered from c2 using:
arg ( c2 ) = 0.523599 radians, which is 30 degrees.
The complex numbers c2 & c3 have the same principal arguments.
asin
template<class T> complex<T> asin(const complex<T>&);
asinh
template<class T> complex<T> asinh(const complex<T>&);
atan
template<class T> complex<T> atan(const complex<T>&);
atanh
template<class T> complex<T> atanh(const complex<T>&);
conj
Mengembalikan konjugasi kompleks dari bilangan kompleks.
template <class Type>
complex<Type> conj(const complex<Type>& complexNum);
Parameter
complexNum
Bilangan kompleks yang konjugasi kompleksnya sedang dikembalikan.
Tampilkan Nilai
Konjugasi kompleks dari bilangan kompleks input.
Keterangan
Konjugasi kompleks dari bilangan kompleks a + bi adalah - bi. Produk dari bilangan kompleks dan konjugasinya adalah norma angka a2 + b2.
Contoh
// complex_conj.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
complex <double> c1 ( 4.0 , 3.0 );
cout << "The complex number c1 = " << c1 << endl;
double dr1 = real ( c1 );
cout << "The real part of c1 is real ( c1 ) = "
<< dr1 << "." << endl;
double di1 = imag ( c1 );
cout << "The imaginary part of c1 is imag ( c1 ) = "
<< di1 << "." << endl;
complex <double> c2 = conj ( c1 );
cout << "The complex conjugate of c1 is c2 = conj ( c1 )= "
<< c2 << endl;
double dr2 = real ( c2 );
cout << "The real part of c2 is real ( c2 ) = "
<< dr2 << "." << endl;
double di2 = imag ( c2 );
cout << "The imaginary part of c2 is imag ( c2 ) = "
<< di2 << "." << endl;
// The real part of the product of a complex number
// and its conjugate is the norm of the number
complex <double> c3 = c1 * c2;
cout << "The norm of (c1 * conj (c1) ) is c1 * c2 = "
<< real( c3 ) << endl;
}
The complex number c1 = (4,3)
The real part of c1 is real ( c1 ) = 4.
The imaginary part of c1 is imag ( c1 ) = 3.
The complex conjugate of c1 is c2 = conj ( c1 )= (4,-3)
The real part of c2 is real ( c2 ) = 4.
The imaginary part of c2 is imag ( c2 ) = -3.
The norm of (c1 * conj (c1) ) is c1 * c2 = 25
cos
Mengembalikan kosinus bilangan kompleks.
template <class Type>
complex<Type> cos(const complex<Type>& complexNum);
Parameter
complexNum
Bilangan kompleks yang kosinusnya sedang ditentukan.
Tampilkan Nilai
Bilangan kompleks yang merupakan kosinus dari bilangan kompleks input.
Keterangan
Identitas yang menentukan kosinus kompleks:
cos (z) = (1/2)*(exp (iz) + exp (- iz) )
cos (z) = cos (a + bi) = cos (a) cosh ( b) - isin (a) sinh (b)
Contoh
// complex_cos.cpp
// compile with: /EHsc
#include <vector>
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
complex <double> c1 ( 3.0 , 4.0 );
cout << "Complex number c1 = " << c1 << endl;
// Values of cosine of a complex number c1
complex <double> c2 = cos ( c1 );
cout << "Complex number c2 = cos ( c1 ) = " << c2 << endl;
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is: " << absc2 << endl;
cout << "The argument of c2 is: "<< argc2 << " radians, which is "
<< argc2 * 180 / pi << " degrees." << endl << endl;
// Cosines of the standard angles in the first
// two quadrants of the complex plane
vector <complex <double> > v1;
vector <complex <double> >::iterator Iter1;
complex <double> vc1 ( polar (1.0, pi / 6) );
v1.push_back( cos ( vc1 ) );
complex <double> vc2 ( polar (1.0, pi / 3) );
v1.push_back( cos ( vc2 ) );
complex <double> vc3 ( polar (1.0, pi / 2) );
v1.push_back( cos ( vc3) );
complex <double> vc4 ( polar (1.0, 2 * pi / 3) );
v1.push_back( cos ( vc4 ) );
complex <double> vc5 ( polar (1.0, 5 * pi / 6) );
v1.push_back( cos ( vc5 ) );
complex <double> vc6 ( polar (1.0, pi ) );
v1.push_back( cos ( vc6 ) );
cout << "The complex components cos (vci), where abs (vci) = 1"
<< "\n& arg (vci) = i * pi / 6 of the vector v1 are:\n" ;
for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )
cout << *Iter1 << endl;
}
Complex number c1 = (3,4)
Complex number c2 = cos ( c1 ) = (-27.0349,-3.85115)
The modulus of c2 is: 27.3079
The argument of c2 is: -3.00009 radians, which is -171.893 degrees.
The complex components cos (vci), where abs (vci) = 1
& arg (vci) = i * pi / 6 of the vector v1 are:
(0.730543,-0.39695)
(1.22777,-0.469075)
(1.54308,1.21529e-013)
(1.22777,0.469075)
(0.730543,0.39695)
(0.540302,-1.74036e-013)
cosh
Mengembalikan kosinus hiperbolik dari bilangan kompleks.
template <class Type>
complex<Type> cosh(const complex<Type>& complexNum);
Parameter
complexNum
Bilangan kompleks yang kosinus hiperboliknya sedang ditentukan.
Tampilkan Nilai
Bilangan kompleks yang merupakan kosinus hiperbolik dari bilangan kompleks input.
Keterangan
Identitas yang mendefinisikan kosinus hiperbolik yang kompleks:
cos (z) = (1/2)*( exp (z) + exp (- z) )
cos (z) = cosh (a + bi) = cosh (a) cos (b) + isinh (a) sin (b)
Contoh
// complex_cosh.cpp
// compile with: /EHsc
#include <vector>
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
complex <double> c1 ( 3.0 , 4.0 );
cout << "Complex number c1 = " << c1 << endl;
// Values of cosine of a complex number c1
complex <double> c2 = cosh ( c1 );
cout << "Complex number c2 = cosh ( c1 ) = " << c2 << endl;
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is: " << absc2 << endl;
cout << "The argument of c2 is: "<< argc2 << " radians, which is "
<< argc2 * 180 / pi << " degrees." << endl << endl;
// Hyperbolic cosines of the standard angles
// in the first two quadrants of the complex plane
vector <complex <double> > v1;
vector <complex <double> >::iterator Iter1;
complex <double> vc1 ( polar (1.0, pi / 6) );
v1.push_back( cosh ( vc1 ) );
complex <double> vc2 ( polar (1.0, pi / 3) );
v1.push_back( cosh ( vc2 ) );
complex <double> vc3 ( polar (1.0, pi / 2) );
v1.push_back( cosh ( vc3) );
complex <double> vc4 ( polar (1.0, 2 * pi / 3) );
v1.push_back( cosh ( vc4 ) );
complex <double> vc5 ( polar (1.0, 5 * pi / 6) );
v1.push_back( cosh ( vc5 ) );
complex <double> vc6 ( polar (1.0, pi ) );
v1.push_back( cosh ( vc6 ) );
cout << "The complex components cosh (vci), where abs (vci) = 1"
<< "\n& arg (vci) = i * pi / 6 of the vector v1 are:\n" ;
for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )
cout << *Iter1 << endl;
}
Complex number c1 = (3,4)
Complex number c2 = cosh ( c1 ) = (-6.58066,-7.58155)
The modulus of c2 is: 10.0392
The argument of c2 is: -2.28564 radians, which is -130.957 degrees.
The complex components cosh (vci), where abs (vci) = 1
& arg (vci) = i * pi / 6 of the vector v1 are:
(1.22777,0.469075)
(0.730543,0.39695)
(0.540302,-8.70178e-014)
(0.730543,-0.39695)
(1.22777,-0.469075)
(1.54308,2.43059e-013)
exp
Mengembalikan fungsi eksponensial dari bilangan kompleks.
template <class Type>
complex<Type> exp(const complex<Type>& complexNum);
Parameter
complexNum
Bilangan kompleks yang eksponensialnya sedang ditentukan.
Tampilkan Nilai
Bilangan kompleks yang merupakan eksponensial dari bilangan kompleks input.
Contoh
// complex_exp.cpp
// compile with: /EHsc
#include <vector>
#include <complex>
#include <iostream>
int main() {
using namespace std;
double pi = 3.14159265359;
complex <double> c1 ( 1 , pi/6 );
cout << "Complex number c1 = " << c1 << endl;
// Value of exponential of a complex number c1:
// note the argument of c2 is determined by the
// imaginary part of c1 & the modulus by the real part
complex <double> c2 = exp ( c1 );
cout << "Complex number c2 = exp ( c1 ) = " << c2 << endl;
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is: " << absc2 << endl;
cout << "The argument of c2 is: "<< argc2 << " radians, which is "
<< argc2 * 180 / pi << " degrees." << endl << endl;
// Exponentials of the standard angles
// in the first two quadrants of the complex plane
vector <complex <double> > v1;
vector <complex <double> >::iterator Iter1;
complex <double> vc1 ( 0.0 , -pi );
v1.push_back( exp ( vc1 ) );
complex <double> vc2 ( 0.0, -2 * pi / 3 );
v1.push_back( exp ( vc2 ) );
complex <double> vc3 ( 0.0, 0.0 );
v1.push_back( exp ( vc3 ) );
complex <double> vc4 ( 0.0, pi / 3 );
v1.push_back( exp ( vc4 ) );
complex <double> vc5 ( 0.0 , 2 * pi / 3 );
v1.push_back( exp ( vc5 ) );
complex <double> vc6 ( 0.0, pi );
v1.push_back( exp ( vc6 ) );
cout << "The complex components exp (vci), where abs (vci) = 1"
<< "\n& arg (vci) = i * pi / 3 of the vector v1 are:\n" ;
for ( Iter1 = v1.begin() ; Iter1 != v1.end() ; Iter1++ )
cout << ( * Iter1 ) << "\n with argument = "
<< ( 180/pi ) * arg ( *Iter1 )
<< " degrees\n modulus = "
<< abs ( * Iter1 ) << endl;
}
imag
Mengekstrak komponen imajiner dari bilangan kompleks.
template <class Type>
Type imag(const complex<Type>& complexNum);
Parameter
complexNum
Bilangan kompleks yang bagian aslinya akan diekstraksi.
Tampilkan Nilai
Bagian imajiner dari bilangan kompleks sebagai fungsi global.
Keterangan
Fungsi templat ini tidak dapat digunakan untuk mengubah bagian nyata dari bilangan kompleks. Untuk mengubah bagian nyata, bilangan kompleks baru harus diberi nilai komponen.
Contoh
// complexc_imag.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
complex <double> c1 ( 4.0 , 3.0 );
cout << "The complex number c1 = " << c1 << endl;
double dr1 = real ( c1 );
cout << "The real part of c1 is real ( c1 ) = "
<< dr1 << "." << endl;
double di1 = imag ( c1 );
cout << "The imaginary part of c1 is imag ( c1 ) = "
<< di1 << "." << endl;
}
The complex number c1 = (4,3)
The real part of c1 is real ( c1 ) = 4.
The imaginary part of c1 is imag ( c1 ) = 3.
log
Mengembalikan logaritma alami dari bilangan kompleks.
template <class Type>
complex<Type> log(const complex<Type>& complexNum);
Parameter
complexNum
Bilangan kompleks yang logaritma alaminya sedang ditentukan.
Tampilkan Nilai
Bilangan kompleks yang merupakan logaritma alami dari bilangan kompleks input.
Keterangan
Potongan cabang berada di sepanjang sumbu nyata negatif.
Contoh
// complex_log.cpp
// compile with: /EHsc
#include <vector>
#include <complex>
#include <iostream>
int main() {
using namespace std;
double pi = 3.14159265359;
complex <double> c1 ( 3.0 , 4.0 );
cout << "Complex number c1 = " << c1 << endl;
// Values of log of a complex number c1
complex <double> c2 = log ( c1 );
cout << "Complex number c2 = log ( c1 ) = " << c2 << endl;
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is: " << absc2 << endl;
cout << "The argument of c2 is: "<< argc2 << " radians, which is "
<< argc2 * 180 / pi << " degrees." << endl << endl;
// log of the standard angles
// in the first two quadrants of the complex plane
vector <complex <double> > v1;
vector <complex <double> >::iterator Iter1;
complex <double> vc1 ( polar (1.0, pi / 6) );
v1.push_back( log ( vc1 ) );
complex <double> vc2 ( polar (1.0, pi / 3) );
v1.push_back( log ( vc2 ) );
complex <double> vc3 ( polar (1.0, pi / 2) );
v1.push_back( log ( vc3) );
complex <double> vc4 ( polar (1.0, 2 * pi / 3) );
v1.push_back( log ( vc4 ) );
complex <double> vc5 ( polar (1.0, 5 * pi / 6) );
v1.push_back( log ( vc5 ) );
complex <double> vc6 ( polar (1.0, pi ) );
v1.push_back( log ( vc6 ) );
cout << "The complex components log (vci), where abs (vci) = 1 "
<< "\n& arg (vci) = i * pi / 6 of the vector v1 are:\n" ;
for ( Iter1 = v1.begin() ; Iter1 != v1.end() ; Iter1++ )
cout << *Iter1 << " " << endl;
}
log10
Mengembalikan logaritma basis 10 dari bilangan kompleks.
template <class Type>
complex<Type> log10(const complex<Type>& complexNum);
Parameter
complexNum
Bilangan kompleks yang logaritma basis 10-nya sedang ditentukan.
Tampilkan Nilai
Bilangan kompleks yang merupakan logaritma dasar 10 dari bilangan kompleks input.
Keterangan
Potongan cabang berada di sepanjang sumbu nyata negatif.
Contoh
// complex_log10.cpp
// compile with: /EHsc
#include <vector>
#include <complex>
#include <iostream>
int main() {
using namespace std;
double pi = 3.14159265359;
complex <double> c1 ( 3.0 , 4.0 );
cout << "Complex number c1 = " << c1 << endl;
// Values of log10 of a complex number c1
complex <double> c2 = log10 ( c1 );
cout << "Complex number c2 = log10 ( c1 ) = " << c2 << endl;
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is: " << absc2 << endl;
cout << "The argument of c2 is: "<< argc2 << " radians, which is "
<< argc2 * 180 / pi << " degrees." << endl << endl;
// log10 of the standard angles
// in the first two quadrants of the complex plane
vector <complex <double> > v1;
vector <complex <double> >::iterator Iter1;
complex <double> vc1 ( polar (1.0, pi / 6) );
v1.push_back( log10 ( vc1 ) );
complex <double> vc2 ( polar (1.0, pi / 3) );
v1.push_back( log10 ( vc2 ) );
complex <double> vc3 ( polar (1.0, pi / 2) );
v1.push_back( log10 ( vc3) );
complex <double> vc4 ( polar (1.0, 2 * pi / 3) );
v1.push_back( log10 ( vc4 ) );
complex <double> vc5 ( polar (1.0, 5 * pi / 6) );
v1.push_back( log10 ( vc5 ) );
complex <double> vc6 ( polar (1.0, pi ) );
v1.push_back( log10 ( vc6 ) );
cout << "The complex components log10 (vci), where abs (vci) = 1"
<< "\n& arg (vci) = i * pi / 6 of the vector v1 are:\n" ;
for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )
cout << *Iter1 << endl;
}
norma
Mengekstrak norma bilangan kompleks.
template <class Type>
Type norm(const complex<Type>& complexNum);
Parameter
complexNum
Bilangan kompleks yang normanya akan ditentukan.
Tampilkan Nilai
Norma bilangan kompleks.
Keterangan
Norma bilangan kompleks a + bi adalah (2 + b2). Norma bilangan kompleks adalah kuadrat modulusnya. Modulus bilangan kompleks adalah ukuran panjang vektor yang mewakili bilangan kompleks. Modulus bilangan kompleks a + bi adalah akar kuadrat (2 + b2), ditulis |a + bi|.
Contoh
// complex_norm.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
// Complex numbers can be entered in polar form with
// modulus and argument parameter inputs but are
// stored in Cartesian form as real & imag coordinates
complex <double> c1 ( polar ( 5.0 ) ); // Default argument = 0
complex <double> c2 ( polar ( 5.0 , pi / 6 ) );
complex <double> c3 ( polar ( 5.0 , 13 * pi / 6 ) );
cout << "c1 = polar ( 5.0 ) = " << c1 << endl;
cout << "c2 = polar ( 5.0 , pi / 6 ) = " << c2 << endl;
cout << "c3 = polar ( 5.0 , 13 * pi / 6 ) = " << c3 << endl;
if ( (arg ( c2 ) <= ( arg ( c3 ) + .00000001) ) ||
(arg ( c2 ) >= ( arg ( c3 ) - .00000001) ) )
cout << "The complex numbers c2 & c3 have the "
<< "same principal arguments."<< endl;
else
cout << "The complex numbers c2 & c3 don't have the "
<< "same principal arguments." << endl;
// The modulus and argument of a complex number can be recovered
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is recovered from c2 using: abs ( c2 ) = "
<< absc2 << endl;
cout << "Argument of c2 is recovered from c2 using:\n arg ( c2 ) = "
<< argc2 << " radians, which is " << argc2 * 180 / pi
<< " degrees." << endl;
// The norm of a complex number is the square of its modulus
double normc2 = norm ( c2 );
double sqrtnormc2 = sqrt ( normc2 );
cout << "The norm of c2 given by: norm ( c2 ) = " << normc2 << endl;
cout << "The modulus of c2 is the square root of the norm: "
<< "sqrt ( normc2 ) = " << sqrtnormc2 << ".";
}
c1 = polar ( 5.0 ) = (5,0)
c2 = polar ( 5.0 , pi / 6 ) = (4.33013,2.5)
c3 = polar ( 5.0 , 13 * pi / 6 ) = (4.33013,2.5)
The complex numbers c2 & c3 have the same principal arguments.
The modulus of c2 is recovered from c2 using: abs ( c2 ) = 5
Argument of c2 is recovered from c2 using:
arg ( c2 ) = 0.523599 radians, which is 30 degrees.
The norm of c2 given by: norm ( c2 ) = 25
The modulus of c2 is the square root of the norm: sqrt ( normc2 ) = 5.
Kutub
Mengembalikan bilangan kompleks, yang sesuai dengan modulus dan argumen tertentu, dalam bentuk Kartesius.
template <class Type>
complex<Type> polar(const Type& _Modulus, const Type& _Argument = 0);
Parameter
_Modulus
Modulus dari bilangan kompleks yang sedang dimasukkan.
_Argumen
Argumen dari bilangan kompleks yang sedang dimasukkan.
Tampilkan Nilai
Bentuk kartesius dari bilangan kompleks yang ditentukan dalam bentuk kutub.
Keterangan
Bentuk polar dari bilangan kompleks menyediakan modulus r dan argumen p, di mana parameter ini terkait dengan komponen Kartesius nyata dan imajiner a dan b dengan persamaan a = r * cos p dan b = r * sin p.
Contoh
// complex_polar.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
// Complex numbers can be entered in polar form with
// modulus and argument parameter inputs but are
// stored in Cartesian form as real & imag coordinates
complex <double> c1 ( polar ( 5.0 ) ); // Default argument = 0
complex <double> c2 ( polar ( 5.0 , pi / 6 ) );
complex <double> c3 ( polar ( 5.0 , 13 * pi / 6 ) );
cout << "c1 = polar ( 5.0 ) = " << c1 << endl;
cout << "c2 = polar ( 5.0 , pi / 6 ) = " << c2 << endl;
cout << "c3 = polar ( 5.0 , 13 * pi / 6 ) = " << c3 << endl;
if ( (arg ( c2 ) <= ( arg ( c3 ) + .00000001) ) ||
(arg ( c2 ) >= ( arg ( c3 ) - .00000001) ) )
cout << "The complex numbers c2 & c3 have the "
<< "same principal arguments."<< endl;
else
cout << "The complex numbers c2 & c3 don't have the "
<< "same principal arguments." << endl;
// the modulus and argument of a complex number can be rcovered
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is recovered from c2 using: abs ( c2 ) = "
<< absc2 << endl;
cout << "Argument of c2 is recovered from c2 using:\n arg ( c2 ) = "
<< argc2 << " radians, which is " << argc2 * 180 / pi
<< " degrees." << endl;
}
c1 = polar ( 5.0 ) = (5,0)
c2 = polar ( 5.0 , pi / 6 ) = (4.33013,2.5)
c3 = polar ( 5.0 , 13 * pi / 6 ) = (4.33013,2.5)
The complex numbers c2 & c3 have the same principal arguments.
The modulus of c2 is recovered from c2 using: abs ( c2 ) = 5
Argument of c2 is recovered from c2 using:
arg ( c2 ) = 0.523599 radians, which is 30 degrees.
pow
Mengevaluasi bilangan kompleks yang diperoleh dengan menaikkan basis yang merupakan bilangan kompleks ke kekuatan bilangan kompleks lainnya.
template <class Type>
complex<Type> pow(const complex<Type>& _Base, int _Power);
template <class Type>
complex<Type> pow(const complex<Type>& _Base, const Type& _Power);
template <class Type>
complex<Type> pow(const complex<Type>& _Base, const complex<Type>& _Power);
template <class Type>
complex<Type> pow(const Type& _Base, const complex<Type>& _Power);
Parameter
_Dasar
Bilangan kompleks atau angka yang merupakan jenis parameter untuk bilangan kompleks yang merupakan basis yang akan dinaikkan ke daya oleh fungsi anggota.
_Kuasa
Bilangan bulat atau bilangan kompleks atau angka yang merupakan jenis parameter untuk bilangan kompleks yang merupakan kekuatan yang akan dinaikkan oleh fungsi anggota.
Tampilkan Nilai
Bilangan kompleks yang diperoleh dengan menaikkan basis yang ditentukan ke daya yang ditentukan.
Keterangan
Fungsi masing-masing secara efektif mengonversi kedua operan ke jenis pengembalian, lalu mengembalikan kiri yang dikonversi ke kanan daya.
Potongan cabang berada di sepanjang sumbu nyata negatif.
Contoh
// complex_pow.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
// First member function
// type complex<double> base & type integer power
complex <double> cb1 ( 3 , 4);
int cp1 = 2;
complex <double> ce1 = pow ( cb1 ,cp1 );
cout << "Complex number for base cb1 = " << cb1 << endl;
cout << "Integer for power = " << cp1 << endl;
cout << "Complex number returned from complex base and integer power:"
<< "\n ce1 = cb1 ^ cp1 = " << ce1 << endl;
double absce1 = abs ( ce1 );
double argce1 = arg ( ce1 );
cout << "The modulus of ce1 is: " << absce1 << endl;
cout << "The argument of ce1 is: "<< argce1 << " radians, which is "
<< argce1 * 180 / pi << " degrees." << endl << endl;
// Second member function
// type complex<double> base & type double power
complex <double> cb2 ( 3 , 4 );
double cp2 = pi;
complex <double> ce2 = pow ( cb2 ,cp2 );
cout << "Complex number for base cb2 = " << cb2 << endl;
cout << "Type double for power cp2 = pi = " << cp2 << endl;
cout << "Complex number returned from complex base and double power:"
<< "\n ce2 = cb2 ^ cp2 = " << ce2 << endl;
double absce2 = abs ( ce2 );
double argce2 = arg ( ce2 );
cout << "The modulus of ce2 is: " << absce2 << endl;
cout << "The argument of ce2 is: "<< argce2 << " radians, which is "
<< argce2 * 180 / pi << " degrees." << endl << endl;
// Third member function
// type complex<double> base & type complex<double> power
complex <double> cb3 ( 3 , 4 );
complex <double> cp3 ( -2 , 1 );
complex <double> ce3 = pow ( cb3 ,cp3 );
cout << "Complex number for base cb3 = " << cb3 << endl;
cout << "Complex number for power cp3= " << cp3 << endl;
cout << "Complex number returned from complex base and complex power:"
<< "\n ce3 = cb3 ^ cp3 = " << ce3 << endl;
double absce3 = abs ( ce3 );
double argce3 = arg ( ce3 );
cout << "The modulus of ce3 is: " << absce3 << endl;
cout << "The argument of ce3 is: "<< argce3 << " radians, which is "
<< argce3 * 180 / pi << " degrees." << endl << endl;
// Fourth member function
// type double base & type complex<double> power
double cb4 = pi;
complex <double> cp4 ( 2 , -1 );
complex <double> ce4 = pow ( cb4 ,cp4 );
cout << "Type double for base cb4 = pi = " << cb4 << endl;
cout << "Complex number for power cp4 = " << cp4 << endl;
cout << "Complex number returned from double base and complex power:"
<< "\n ce4 = cb4 ^ cp4 = " << ce4 << endl;
double absce4 = abs ( ce4 );
double argce4 = arg ( ce4 );
cout << "The modulus of ce4 is: " << absce4 << endl;
cout << "The argument of ce4 is: "<< argce4 << " radians, which is "
<< argce4 * 180 / pi << " degrees." << endl << endl;
}
Complex number for base cb1 = (3,4)
Integer for power = 2
Complex number returned from complex base and integer power:
ce1 = cb1 ^ cp1 = (-7,24)
The modulus of ce1 is: 25
The argument of ce1 is: 1.85459 radians, which is 106.26 degrees.
Complex number for base cb2 = (3,4)
Type double for power cp2 = pi = 3.14159
Complex number returned from complex base and double power:
ce2 = cb2 ^ cp2 = (-152.915,35.5475)
The modulus of ce2 is: 156.993
The argument of ce2 is: 2.91318 radians, which is 166.913 degrees.
Complex number for base cb3 = (3,4)
Complex number for power cp3= (-2,1)
Complex number returned from complex base and complex power:
ce3 = cb3 ^ cp3 = (0.0153517,-0.00384077)
The modulus of ce3 is: 0.0158249
The argument of ce3 is: -0.245153 radians, which is -14.0462 degrees.
Type double for base cb4 = pi = 3.14159
Complex number for power cp4 = (2,-1)
Complex number returned from double base and complex power:
ce4 = cb4 ^ cp4 = (4.07903,-8.98725)
The modulus of ce4 is: 9.8696
The argument of ce4 is: -1.14473 radians, which is -65.5882 degrees.
proj
template<class T> complex<T> proj(const complex<T>&);
real
Mengekstrak komponen riil dari bilangan kompleks.
template <class Type>
Type real(const complex<Type>& complexNum);
Parameter
complexNum
Bilangan kompleks yang bagian aslinya akan diekstraksi.
Tampilkan Nilai
Bagian nyata dari bilangan kompleks sebagai fungsi global.
Keterangan
Fungsi templat ini tidak dapat digunakan untuk mengubah bagian nyata dari bilangan kompleks. Untuk mengubah bagian nyata, bilangan kompleks baru harus diberi nilai komponen.
Contoh
// complex_real.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
complex <double> c1 ( 4.0 , 3.0 );
cout << "The complex number c1 = " << c1 << endl;
double dr1 = real ( c1 );
cout << "The real part of c1 is real ( c1 ) = "
<< dr1 << "." << endl;
double di1 = imag ( c1 );
cout << "The imaginary part of c1 is imag ( c1 ) = "
<< di1 << "." << endl;
}
The complex number c1 = (4,3)
The real part of c1 is real ( c1 ) = 4.
The imaginary part of c1 is imag ( c1 ) = 3.
sin
Mengembalikan sinus bilangan kompleks.
template <class Type>
complex<Type> sin(const complex<Type>& complexNum);
Parameter
complexNum
Bilangan kompleks yang sinusnya sedang ditentukan.
Tampilkan Nilai
Bilangan kompleks yang merupakan sinus dari bilangan kompleks input.
Keterangan
Identitas yang menentukan sines kompleks:
sin (z) = (1/2 i)*( exp (iz) - exp (- iz) )
sin (z) = sin (a + bi) = sin (a) cosh (b) + icos (a) sinh (b)
Contoh
// complex_sin.cpp
// compile with: /EHsc
#include <vector>
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
complex <double> c1 ( 3.0 , 4.0 );
cout << "Complex number c1 = " << c1 << endl;
// Values of sine of a complex number c1
complex <double> c2 = sin ( c1 );
cout << "Complex number c2 = sin ( c1 ) = " << c2 << endl;
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is: " << absc2 << endl;
cout << "The argument of c2 is: "<< argc2 << " radians, which is "
<< argc2 * 180 / pi << " degrees." << endl << endl;
// sines of the standard angles in the first
// two quadrants of the complex plane
vector <complex <double> > v1;
vector <complex <double> >::iterator Iter1;
complex <double> vc1 ( polar ( 1.0, pi / 6 ) );
v1.push_back( sin ( vc1 ) );
complex <double> vc2 ( polar ( 1.0, pi / 3 ) );
v1.push_back( sin ( vc2 ) );
complex <double> vc3 ( polar ( 1.0, pi / 2 ) );
v1.push_back( sin ( vc3 ) );
complex <double> vc4 ( polar ( 1.0, 2 * pi / 3 ) );
v1.push_back( sin ( vc4 ) );
complex <double> vc5 ( polar ( 1.0, 5 * pi / 6 ) );
v1.push_back( sin ( vc5 ) );
complex <double> vc6 ( polar ( 1.0, pi ) );
v1.push_back( sin ( vc6 ) );
cout << "The complex components sin (vci), where abs (vci) = 1"
<< "\n& arg (vci) = i * pi / 6 of the vector v1 are:\n" ;
for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )
cout << *Iter1 << endl;
}
Complex number c1 = (3,4)
Complex number c2 = sin ( c1 ) = (3.85374,-27.0168)
The modulus of c2 is: 27.2903
The argument of c2 is: -1.42911 radians, which is -81.882 degrees.
The complex components sin (vci), where abs (vci) = 1
& arg (vci) = i * pi / 6 of the vector v1 are:
(0.85898,0.337596)
(0.670731,0.858637)
(-1.59572e-013,1.1752)
(-0.670731,0.858637)
(-0.85898,0.337596)
(-0.841471,-1.11747e-013)
sinh
Mengembalikan sinus hiperbolik dari bilangan kompleks.
template <class Type>
complex<Type> sinh(const complex<Type>& complexNum);
Parameter
complexNum
Bilangan kompleks yang sinus hiperboliknya sedang ditentukan.
Tampilkan Nilai
Bilangan kompleks yang merupakan sinus hiperbolik dari bilangan kompleks input.
Keterangan
Identitas yang mendefinisikan dosa hiperbolik yang kompleks:
sinh (z) = (1/2)*( exp (z) - exp (- z) )
sinh (z) = sinh (a + bi) = sinh (a) cos (b) + icosh (a) dosa (b)
Contoh
// complex_sinh.cpp
// compile with: /EHsc
#include <vector>
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
complex <double> c1 ( 3.0 , 4.0 );
cout << "Complex number c1 = " << c1 << endl;
// Values of sine of a complex number c1
complex <double> c2 = sinh ( c1 );
cout << "Complex number c2 = sinh ( c1 ) = " << c2 << endl;
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is: " << absc2 << endl;
cout << "The argument of c2 is: "<< argc2 << " radians, which is "
<< argc2 * 180 / pi << " degrees." << endl << endl;
// Hyperbolic sines of the standard angles in
// the first two quadrants of the complex plane
vector <complex <double> > v1;
vector <complex <double> >::iterator Iter1;
complex <double> vc1 ( polar ( 1.0, pi / 6 ) );
v1.push_back( sinh ( vc1 ) );
complex <double> vc2 ( polar ( 1.0, pi / 3 ) );
v1.push_back( sinh ( vc2 ) );
complex <double> vc3 ( polar ( 1.0, pi / 2 ) );
v1.push_back( sinh ( vc3) );
complex <double> vc4 ( polar ( 1.0, 2 * pi / 3 ) );
v1.push_back( sinh ( vc4 ) );
complex <double> vc5 ( polar ( 1.0, 5 * pi / 6 ) );
v1.push_back( sinh ( vc5 ) );
complex <double> vc6 ( polar ( 1.0, pi ) );
v1.push_back( sinh ( vc6 ) );
cout << "The complex components sinh (vci), where abs (vci) = 1"
<< "\n& arg (vci) = i * pi / 6 of the vector v1 are:\n" ;
for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )
cout << *Iter1 << endl;
}
Complex number c1 = (3,4)
Complex number c2 = sinh ( c1 ) = (-6.54812,-7.61923)
The modulus of c2 is: 10.0464
The argument of c2 is: -2.28073 radians, which is -130.676 degrees.
The complex components sinh (vci), where abs (vci) = 1
& arg (vci) = i * pi / 6 of the vector v1 are:
(0.858637,0.670731)
(0.337596,0.85898)
(-5.58735e-014,0.841471)
(-0.337596,0.85898)
(-0.858637,0.670731)
(-1.1752,-3.19145e-013)
sqrt
Menghitung akar kuadrat dari bilangan kompleks.
template <class Type>
complex<Type> sqrt(const complex<Type>& complexNum);
Parameter
complexNum
Bilangan kompleks yang akar kuadratnya akan ditemukan.
Tampilkan Nilai
Akar kuadrat dari bilangan kompleks.
Keterangan
Akar kuadrat akan memiliki sudut fase dalam interval setengah terbuka (-pi/2, pi/2].
Potongan cabang di bidang kompleks berada di sepanjang sumbu nyata negatif.
Akar kuadrat dari bilangan kompleks akan memiliki modulus yang merupakan akar kuadrat dari angka input dan argumen yang merupakan setengah dari angka input.
Contoh
// complex_sqrt.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
// Complex numbers can be entered in polar form with
// modulus and argument parameter inputs but are
// stored in Cartesian form as real & imag coordinates
complex <double> c1 ( polar ( 25.0 , pi / 2 ) );
complex <double> c2 = sqrt ( c1 );
cout << "c1 = polar ( 5.0 ) = " << c1 << endl;
cout << "c2 = sqrt ( c1 ) = " << c2 << endl;
// The modulus and argument of a complex number can be recovered
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is recovered from c2 using: abs ( c2 ) = "
<< absc2 << endl;
cout << "Argument of c2 is recovered from c2 using:\n arg ( c2 ) = "
<< argc2 << " radians, which is " << argc2 * 180 / pi
<< " degrees." << endl;
// The modulus and argument of c2 can be directly calculated
absc2 = sqrt( abs ( c1 ) );
argc2 = 0.5 * arg ( c1 );
cout << "The modulus of c2 = sqrt( abs ( c1 ) ) =" << absc2 << endl;
cout << "The argument of c2 = ( 1 / 2 ) * arg ( c1 ) ="
<< argc2 << " radians,\n which is " << argc2 * 180 / pi
<< " degrees." << endl;
}
c1 = polar ( 5.0 ) = (-2.58529e-012,25)
c2 = sqrt ( c1 ) = (3.53553,3.53553)
The modulus of c2 is recovered from c2 using: abs ( c2 ) = 5
Argument of c2 is recovered from c2 using:
arg ( c2 ) = 0.785398 radians, which is 45 degrees.
The modulus of c2 = sqrt( abs ( c1 ) ) =5
The argument of c2 = ( 1 / 2 ) * arg ( c1 ) =0.785398 radians,
which is 45 degrees.
tan
Mengembalikan tangen bilangan kompleks.
template <class Type>
complex<Type> tan(const complex<Type>& complexNum);
Parameter
complexNum
Bilangan kompleks yang tangennya sedang ditentukan.
Tampilkan Nilai
Bilangan kompleks yang merupakan tangen dari bilangan kompleks input.
Keterangan
Identitas yang menentukan kotangen kompleks:
tan (z) = sin (z) / cos (z) = ( exp (iz) - exp (- iz) ) / i( exp (iz) + exp (- iz) )
Contoh
// complex_tan.cpp
// compile with: /EHsc
#include <vector>
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
complex <double> c1 ( 3.0 , 4.0 );
cout << "Complex number c1 = " << c1 << endl;
// Values of cosine of a complex number c1
complex <double> c2 = tan ( c1 );
cout << "Complex number c2 = tan ( c1 ) = " << c2 << endl;
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is: " << absc2 << endl;
cout << "The argument of c2 is: "<< argc2 << " radians, which is "
<< argc2 * 180 / pi << " degrees." << endl << endl;
// Hyperbolic tangent of the standard angles
// in the first two quadrants of the complex plane
vector <complex <double> > v1;
vector <complex <double> >::iterator Iter1;
complex <double> vc1 ( polar ( 1.0, pi / 6 ) );
v1.push_back( tan ( vc1 ) );
complex <double> vc2 ( polar ( 1.0, pi / 3 ) );
v1.push_back( tan ( vc2 ) );
complex <double> vc3 ( polar ( 1.0, pi / 2 ) );
v1.push_back( tan ( vc3) );
complex <double> vc4 ( polar ( 1.0, 2 * pi / 3 ) );
v1.push_back( tan ( vc4 ) );
complex <double> vc5 ( polar ( 1.0, 5 * pi / 6 ) );
v1.push_back( tan ( vc5 ) );
complex <double> vc6 ( polar ( 1.0, pi ) );
v1.push_back( tan ( vc6 ) );
cout << "The complex components tan (vci), where abs (vci) = 1"
<< "\n& arg (vci) = i * pi / 6 of the vector v1 are:\n" ;
for ( Iter1 = v1.begin() ; Iter1 != v1.end() ; Iter1++ )
cout << *Iter1 << endl;
}
Complex number c1 = (3,4)
Complex number c2 = tan ( c1 ) = (-0.000187346,0.999356)
The modulus of c2 is: 0.999356
The argument of c2 is: 1.57098 radians, which is 90.0107 degrees.
The complex components tan (vci), where abs (vci) = 1
& arg (vci) = i * pi / 6 of the vector v1 are:
(0.713931,0.85004)
(0.24356,0.792403)
(-4.34302e-014,0.761594)
(-0.24356,0.792403)
(-0.713931,0.85004)
(-1.55741,-7.08476e-013)
tanh
Mengembalikan tangen hiperbolik dari bilangan kompleks.
template <class Type>
complex<Type> tanh(const complex<Type>& complexNum);
Parameter
complexNum
Bilangan kompleks yang tangen hiperboliknya sedang ditentukan.
Tampilkan Nilai
Bilangan kompleks yang merupakan tangen hiperbolik dari bilangan kompleks input.
Keterangan
Identitas yang mendefinisikan kotangen hiperbolik yang kompleks:
tanh (z) = sinh (z) / cosh (z) = ( exp (z) - exp (- z) ) / ( exp (z) + exp (- z) )
Contoh
// complex_tanh.cpp
// compile with: /EHsc
#include <vector>
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
complex <double> c1 ( 3.0 , 4.0 );
cout << "Complex number c1 = " << c1 << endl;
// Values of cosine of a complex number c1
complex <double> c2 = tanh ( c1 );
cout << "Complex number c2 = tanh ( c1 ) = " << c2 << endl;
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is: " << absc2 << endl;
cout << "The argument of c2 is: "<< argc2 << " radians, which is "
<< argc2 * 180 / pi << " degrees." << endl << endl;
// Hyperbolic tangents of the standard angles
// in the first two quadrants of the complex plane
vector <complex <double> > v1;
vector <complex <double> >::iterator Iter1;
complex <double> vc1 ( polar ( 1.0, pi / 6 ) );
v1.push_back( tanh ( vc1 ) );
complex <double> vc2 ( polar ( 1.0, pi / 3 ) );
v1.push_back( tanh ( vc2 ) );
complex <double> vc3 ( polar ( 1.0, pi / 2 ) );
v1.push_back( tanh ( vc3 ) );
complex <double> vc4 ( polar ( 1.0, 2 * pi / 3 ) );
v1.push_back( tanh ( vc4 ) );
complex <double> vc5 ( polar ( 1.0, 5 * pi / 6 ) );
v1.push_back( tanh ( vc5 ) );
complex <double> vc6 ( polar ( 1.0, pi ) );
v1.push_back( tanh ( vc6 ) );
cout << "The complex components tanh (vci), where abs (vci) = 1"
<< "\n& arg (vci) = i * pi / 6 of the vector v1 are:\n" ;
for ( Iter1 = v1.begin( ) ; Iter1 != v1.end( ) ; Iter1++ )
cout << *Iter1 << endl;
}
Complex number c1 = (3,4)
Complex number c2 = tanh ( c1 ) = (1.00071,0.00490826)
The modulus of c2 is: 1.00072
The argument of c2 is: 0.00490474 radians, which is 0.281021 degrees.
The complex components tanh (vci), where abs (vci) = 1
& arg (vci) = i * pi / 6 of the vector v1 are:
(0.792403,0.24356)
(0.85004,0.713931)
(-3.54238e-013,1.55741)
(-0.85004,0.713931)
(-0.792403,0.24356)
(-0.761594,-8.68604e-014)