ImageEstimatorsCatalog.LoadImages Metode
Definisi
Penting
Beberapa informasi terkait produk prarilis yang dapat diubah secara signifikan sebelum dirilis. Microsoft tidak memberikan jaminan, tersirat maupun tersurat, sehubungan dengan informasi yang diberikan di sini.
Buat ImageLoadingEstimator, yang memuat data dari kolom yang ditentukan sebagai inputColumnName
gambar ke kolom baru: outputColumnName
.
public static Microsoft.ML.Data.ImageLoadingEstimator LoadImages (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string imageFolder, string inputColumnName = default);
static member LoadImages : Microsoft.ML.TransformsCatalog * string * string * string -> Microsoft.ML.Data.ImageLoadingEstimator
<Extension()>
Public Function LoadImages (catalog As TransformsCatalog, outputColumnName As String, imageFolder As String, Optional inputColumnName As String = Nothing) As ImageLoadingEstimator
Parameter
- catalog
- TransformsCatalog
Katalog transformasi.
- outputColumnName
- String
Nama kolom yang dihasilkan dari transformasi inputColumnName
.
Jenis data kolom ini adalah MLImage.
- imageFolder
- String
Folder tempat mencari gambar.
- inputColumnName
- String
Nama kolom dengan jalur ke gambar untuk dimuat. Estimator ini beroperasi melalui data teks.
Mengembalikan
Contoh
using System;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class LoadImages
{
// Loads the images of the imagesFolder into an IDataView.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Downloading a few images, and an images.tsv file, which contains a
// list of the files from the dotnet/machinelearning/test/data/images/.
// If you inspect the fileSystem, after running this line, an "images"
// folder will be created, containing 4 images, and a .tsv file
// enumerating the images.
var imagesDataFile = Microsoft.ML.SamplesUtils.DatasetUtils
.GetSampleImages();
// Preview of the content of the images.tsv file
//
// imagePath imageType
// tomato.bmp tomato
// banana.jpg banana
// hotdog.jpg hotdog
// tomato.jpg tomato
var data = mlContext.Data.CreateTextLoader(new TextLoader.Options()
{
Columns = new[]
{
new TextLoader.Column("ImagePath", DataKind.String, 0),
new TextLoader.Column("Name", DataKind.String, 1),
}
}).Load(imagesDataFile);
var imagesFolder = Path.GetDirectoryName(imagesDataFile);
// Image loading pipeline.
var pipeline = mlContext.Transforms.LoadImages("ImageObject",
imagesFolder, "ImagePath");
var transformedData = pipeline.Fit(data).Transform(data);
PrintColumns(transformedData);
// Preview the transformedData.
// ImagePath Name ImageObject
// tomato.bmp tomato {Width=800, Height=534}
// banana.jpg banana {Width=800, Height=288}
// hotdog.jpg hotdog {Width=800, Height=391}
// tomato.jpg tomato {Width=800, Height=534}
}
private static void PrintColumns(IDataView transformedData)
{
// The transformedData IDataView contains the loaded images now.
Console.WriteLine("{0, -25} {1, -25} {2, -25}", "ImagePath", "Name",
"ImageObject");
using (var cursor = transformedData.GetRowCursor(transformedData
.Schema))
{
// Note that it is best to get the getters and values *before*
// iteration, so as to facilitate buffer sharing (if applicable),
// and column-type validation once, rather than many times.
ReadOnlyMemory<char> imagePath = default;
ReadOnlyMemory<char> name = default;
MLImage imageObject = null;
var imagePathGetter = cursor.GetGetter<ReadOnlyMemory<char>>(cursor
.Schema["ImagePath"]);
var nameGetter = cursor.GetGetter<ReadOnlyMemory<char>>(cursor
.Schema["Name"]);
var imageObjectGetter = cursor.GetGetter<MLImage>(cursor.Schema[
"ImageObject"]);
while (cursor.MoveNext())
{
imagePathGetter(ref imagePath);
nameGetter(ref name);
imageObjectGetter(ref imageObject);
Console.WriteLine("{0, -25} {1, -25} {2, -25}",
imagePath, name,
$"Width={imageObject.Width}, Height={imageObject.Height}");
}
// Dispose the image.
imageObject.Dispose();
}
}
}
}