TextCatalog.LatentDirichletAllocation Metode
Definisi
Penting
Beberapa informasi terkait produk prarilis yang dapat diubah secara signifikan sebelum dirilis. Microsoft tidak memberikan jaminan, tersirat maupun tersurat, sehubungan dengan informasi yang diberikan di sini.
Buat LatentDirichletAllocationEstimator, yang menggunakan LightLDA untuk mengubah teks (direpresentasikan sebagai vektor float) menjadi vektor Single yang menunjukkan kesamaan teks dengan setiap topik yang diidentifikasi.
public static Microsoft.ML.Transforms.Text.LatentDirichletAllocationEstimator LatentDirichletAllocation (this Microsoft.ML.TransformsCatalog.TextTransforms catalog, string outputColumnName, string inputColumnName = default, int numberOfTopics = 100, float alphaSum = 100, float beta = 0.01, int samplingStepCount = 4, int maximumNumberOfIterations = 200, int likelihoodInterval = 5, int numberOfThreads = 0, int maximumTokenCountPerDocument = 512, int numberOfSummaryTermsPerTopic = 10, int numberOfBurninIterations = 10, bool resetRandomGenerator = false);
static member LatentDirichletAllocation : Microsoft.ML.TransformsCatalog.TextTransforms * string * string * int * single * single * int * int * int * int * int * int * int * bool -> Microsoft.ML.Transforms.Text.LatentDirichletAllocationEstimator
<Extension()>
Public Function LatentDirichletAllocation (catalog As TransformsCatalog.TextTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional numberOfTopics As Integer = 100, Optional alphaSum As Single = 100, Optional beta As Single = 0.01, Optional samplingStepCount As Integer = 4, Optional maximumNumberOfIterations As Integer = 200, Optional likelihoodInterval As Integer = 5, Optional numberOfThreads As Integer = 0, Optional maximumTokenCountPerDocument As Integer = 512, Optional numberOfSummaryTermsPerTopic As Integer = 10, Optional numberOfBurninIterations As Integer = 10, Optional resetRandomGenerator As Boolean = false) As LatentDirichletAllocationEstimator
Parameter
- catalog
- TransformsCatalog.TextTransforms
Katalog transformasi.
- outputColumnName
- String
Nama kolom yang dihasilkan dari transformasi inputColumnName
.
Estimator ini menghasilkan vektor .Single
- inputColumnName
- String
Nama kolom yang akan diubah. Jika diatur ke null
, nilai outputColumnName
akan digunakan sebagai sumber.
Estimator ini beroperasi melalui vektor Single.
- numberOfTopics
- Int32
Jumlah topik.
- alphaSum
- Single
Dirichlet sebelumnya pada vektor topik dokumen.
- beta
- Single
Dirichlet sebelumnya menggunakan vektor topik vocab.
- samplingStepCount
- Int32
Jumlah langkah Metropolis Hasting.
- maximumNumberOfIterations
- Int32
Jumlah perulangan.
- likelihoodInterval
- Int32
Kemungkinan log komputasi atas himpunan data lokal pada interval perulangan ini.
- numberOfThreads
- Int32
Jumlah utas pelatihan. Nilai default tergantung pada jumlah prosesor logis.
- maximumTokenCountPerDocument
- Int32
Ambang batas jumlah maksimum token per dokumen.
- numberOfSummaryTermsPerTopic
- Int32
Jumlah kata untuk meringkas topik.
- numberOfBurninIterations
- Int32
Jumlah iterasi burn-in.
- resetRandomGenerator
- Boolean
Reset generator angka acak untuk setiap dokumen.
Mengembalikan
Contoh
using System;
using System.Collections.Generic;
using Microsoft.ML;
namespace Samples.Dynamic
{
public static class LatentDirichletAllocation
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Create a small dataset as an IEnumerable.
var samples = new List<TextData>()
{
new TextData(){ Text = "ML.NET's LatentDirichletAllocation API " +
"computes topic models." },
new TextData(){ Text = "ML.NET's LatentDirichletAllocation API " +
"is the best for topic models." },
new TextData(){ Text = "I like to eat broccoli and bananas." },
new TextData(){ Text = "I eat bananas for breakfast." },
new TextData(){ Text = "This car is expensive compared to last " +
"week's price." },
new TextData(){ Text = "This car was $X last week." },
};
// Convert training data to IDataView.
var dataview = mlContext.Data.LoadFromEnumerable(samples);
// A pipeline for featurizing the text/string using
// LatentDirichletAllocation API. o be more accurate in computing the
// LDA features, the pipeline first normalizes text and removes stop
// words before passing tokens (the individual words, lower cased, with
// common words removed) to LatentDirichletAllocation.
var pipeline = mlContext.Transforms.Text.NormalizeText("NormalizedText",
"Text")
.Append(mlContext.Transforms.Text.TokenizeIntoWords("Tokens",
"NormalizedText"))
.Append(mlContext.Transforms.Text.RemoveDefaultStopWords("Tokens"))
.Append(mlContext.Transforms.Conversion.MapValueToKey("Tokens"))
.Append(mlContext.Transforms.Text.ProduceNgrams("Tokens"))
.Append(mlContext.Transforms.Text.LatentDirichletAllocation(
"Features", "Tokens", numberOfTopics: 3));
// Fit to data.
var transformer = pipeline.Fit(dataview);
// Create the prediction engine to get the LDA features extracted from
// the text.
var predictionEngine = mlContext.Model.CreatePredictionEngine<TextData,
TransformedTextData>(transformer);
// Convert the sample text into LDA features and print it.
PrintLdaFeatures(predictionEngine.Predict(samples[0]));
PrintLdaFeatures(predictionEngine.Predict(samples[1]));
// Features obtained post-transformation.
// For LatentDirichletAllocation, we had specified numTopic:3. Hence
// each prediction has been featurized as a vector of floats with length
// 3.
// Topic1 Topic2 Topic3
// 0.6364 0.2727 0.0909
// 0.5455 0.1818 0.2727
}
private static void PrintLdaFeatures(TransformedTextData prediction)
{
for (int i = 0; i < prediction.Features.Length; i++)
Console.Write($"{prediction.Features[i]:F4} ");
Console.WriteLine();
}
private class TextData
{
public string Text { get; set; }
}
private class TransformedTextData : TextData
{
public float[] Features { get; set; }
}
}
}