TextCatalog.TokenizeIntoCharactersAsKeys Metode
Definisi
Penting
Beberapa informasi terkait produk prarilis yang dapat diubah secara signifikan sebelum dirilis. Microsoft tidak memberikan jaminan, tersirat maupun tersurat, sehubungan dengan informasi yang diberikan di sini.
Buat TokenizingByCharactersEstimator, yang membuat token dengan memisahkan teks menjadi urutan karakter menggunakan jendela geser.
public static Microsoft.ML.Transforms.Text.TokenizingByCharactersEstimator TokenizeIntoCharactersAsKeys (this Microsoft.ML.TransformsCatalog.TextTransforms catalog, string outputColumnName, string inputColumnName = default, bool useMarkerCharacters = true);
static member TokenizeIntoCharactersAsKeys : Microsoft.ML.TransformsCatalog.TextTransforms * string * string * bool -> Microsoft.ML.Transforms.Text.TokenizingByCharactersEstimator
<Extension()>
Public Function TokenizeIntoCharactersAsKeys (catalog As TransformsCatalog.TextTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional useMarkerCharacters As Boolean = true) As TokenizingByCharactersEstimator
Parameter
- catalog
- TransformsCatalog.TextTransforms
Katalog transformasi terkait teks.
- outputColumnName
- String
Nama kolom yang dihasilkan dari transformasi inputColumnName
.
Jenis data kolom ini akan menjadi vektor kunci berukuran variabel.
- inputColumnName
- String
Nama kolom yang akan diubah. Jika diatur ke null
, nilai outputColumnName
akan digunakan sebagai sumber.
Estimator ini beroperasi melalui jenis data teks.
- useMarkerCharacters
- Boolean
Untuk dapat membedakan token, misalnya untuk tujuan penelusuran kesalahan, Anda dapat memilih untuk menambahkan karakter penanda, 0x02
, ke awal, dan menambahkan karakter penanda lain, 0x03
, ke akhir vektor output karakter.
Mengembalikan
Contoh
using System;
using System.Collections.Generic;
using Microsoft.ML;
namespace Samples.Dynamic
{
public static class TokenizeIntoCharactersAsKeys
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Create an empty list as the dataset. The
// 'TokenizeIntoCharactersAsKeys' does not require training data as
// the estimator ('TokenizingByCharactersEstimator') created by
// 'TokenizeIntoCharactersAsKeys' API is not a trainable estimator.
// The empty list is only needed to pass input schema to the pipeline.
var emptySamples = new List<TextData>();
// Convert sample list to an empty IDataView.
var emptyDataView = mlContext.Data.LoadFromEnumerable(emptySamples);
// A pipeline for converting text into vector of characters.
// The 'TokenizeIntoCharactersAsKeys' produces result as key type.
// 'MapKeyToValue' is need to map keys back to their original values.
var textPipeline = mlContext.Transforms.Text
.TokenizeIntoCharactersAsKeys("CharTokens", "Text",
useMarkerCharacters: false)
.Append(mlContext.Transforms.Conversion.MapKeyToValue(
"CharTokens"));
// Fit to data.
var textTransformer = textPipeline.Fit(emptyDataView);
// Create the prediction engine to get the character vector from the
// input text/string.
var predictionEngine = mlContext.Model.CreatePredictionEngine<TextData,
TransformedTextData>(textTransformer);
// Call the prediction API to convert the text into characters.
var data = new TextData()
{
Text = "ML.NET's " +
"TokenizeIntoCharactersAsKeys API splits text/string into " +
"characters."
};
var prediction = predictionEngine.Predict(data);
// Print the length of the character vector.
Console.WriteLine($"Number of tokens: {prediction.CharTokens.Length}");
// Print the character vector.
Console.WriteLine("\nCharacter Tokens: " + string.Join(",", prediction
.CharTokens));
// Expected output:
// Number of tokens: 77
// Character Tokens: M,L,.,N,E,T,',s,<?>,T,o,k,e,n,i,z,e,I,n,t,o,C,h,a,r,a,c,t,e,r,s,A,s,K,e,y,s,<?>,A,P,I,<?>,
// s,p,l,i,t,s,<?>,t,e,x,t,/,s,t,r,i,n,g,<?>,i,n,t,o,<?>,c,h,a,r,a,c,t,e,r,s,.
//
// <?>: is a unicode control character used instead of spaces ('\u2400').
}
private class TextData
{
public string Text { get; set; }
}
private class TransformedTextData : TextData
{
public string[] CharTokens { get; set; }
}
}
}