TimeSeriesCatalog.DetectIidChangePoint Metode
Definisi
Penting
Beberapa informasi terkait produk prarilis yang dapat diubah secara signifikan sebelum dirilis. Microsoft tidak memberikan jaminan, tersirat maupun tersurat, sehubungan dengan informasi yang diberikan di sini.
Overload
DetectIidChangePoint(TransformsCatalog, String, String, Double, Int32, MartingaleType, Double) |
Buat IidChangePointEstimator, yang memprediksi titik perubahan dalam rangkaian waktu independen yang didistribusikan secara identik (i.i.d.) berdasarkan estimasi kepadatan kernel adaptif dan skor martingale. |
DetectIidChangePoint(TransformsCatalog, String, String, Int32, Int32, MartingaleType, Double) |
Kedaluwarsa.
Buat IidChangePointEstimator, yang memprediksi titik perubahan dalam rangkaian waktu independen yang didistribusikan secara identik (i.i.d.) berdasarkan estimasi kepadatan kernel adaptif dan skor martingale. |
DetectIidChangePoint(TransformsCatalog, String, String, Double, Int32, MartingaleType, Double)
Buat IidChangePointEstimator, yang memprediksi titik perubahan dalam rangkaian waktu independen yang didistribusikan secara identik (i.i.d.) berdasarkan estimasi kepadatan kernel adaptif dan skor martingale.
public static Microsoft.ML.Transforms.TimeSeries.IidChangePointEstimator DetectIidChangePoint (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, double confidence, int changeHistoryLength, Microsoft.ML.Transforms.TimeSeries.MartingaleType martingale = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, double eps = 0.1);
static member DetectIidChangePoint : Microsoft.ML.TransformsCatalog * string * string * double * int * Microsoft.ML.Transforms.TimeSeries.MartingaleType * double -> Microsoft.ML.Transforms.TimeSeries.IidChangePointEstimator
<Extension()>
Public Function DetectIidChangePoint (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Double, changeHistoryLength As Integer, Optional martingale As MartingaleType = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, Optional eps As Double = 0.1) As IidChangePointEstimator
Parameter
- catalog
- TransformsCatalog
Katalog transformasi.
- outputColumnName
- String
Nama kolom yang dihasilkan dari transformasi inputColumnName
.
Data kolom adalah vektor dari Double. Vektor berisi 4 elemen: pemberitahuan (nilai bukan nol berarti titik perubahan), skor mentah, p-Value, dan skor martingale.
- inputColumnName
- String
Nama kolom yang akan diubah. Data kolom harus Single. Jika diatur ke null
, nilai outputColumnName
akan digunakan sebagai sumber.
- confidence
- Double
Keyakinan untuk deteksi titik perubahan dalam rentang [0, 100].
- changeHistoryLength
- Int32
Panjang jendela geser pada nilai p untuk menghitung skor martingale.
- martingale
- MartingaleType
Martingale digunakan untuk penilaian.
- eps
- Double
Parameter epsilon untuk Martingale Power.
Mengembalikan
Contoh
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class DetectIidChangePointBatchPrediction
{
// This example creates a time series (list of Data with the i-th element
// corresponding to the i-th time slot). The estimator is applied then to
// identify points where data distribution changed.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with a change
const int Size = 16;
var data = new List<TimeSeriesData>(Size)
{
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
//Change point data.
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
};
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup estimator arguments
string outputColumnName = nameof(ChangePointPrediction.Prediction);
string inputColumnName = nameof(TimeSeriesData.Value);
// The transformed data.
var transformedData = ml.Transforms.DetectIidChangePoint(
outputColumnName, inputColumnName, 95.0d, Size / 4).Fit(dataView)
.Transform(dataView);
// Getting the data of the newly created column as an IEnumerable of
// ChangePointPrediction.
var predictionColumn = ml.Data.CreateEnumerable<ChangePointPrediction>(
transformedData, reuseRowObject: false);
Console.WriteLine($"{outputColumnName} column obtained " +
$"post-transformation.");
Console.WriteLine("Data\tAlert\tScore\tP-Value\tMartingale value");
int k = 0;
foreach (var prediction in predictionColumn)
PrintPrediction(data[k++].Value, prediction);
// Prediction column obtained post-transformation.
// Data Alert Score P-Value Martingale value
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 7 1 7.00 0.00 10298.67 <-- alert is on, predicted changepoint
// 7 0 7.00 0.13 33950.16
// 7 0 7.00 0.26 60866.34
// 7 0 7.00 0.38 78362.04
// 7 0 7.00 0.50 0.01
// 7 0 7.00 0.50 0.00
// 7 0 7.00 0.50 0.00
// 7 0 7.00 0.50 0.00
}
private static void PrintPrediction(float value, ChangePointPrediction
prediction) =>
Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}\t{4:0.00}", value,
prediction.Prediction[0], prediction.Prediction[1],
prediction.Prediction[2], prediction.Prediction[3]);
class ChangePointPrediction
{
[VectorType(4)]
public double[] Prediction { get; set; }
}
class TimeSeriesData
{
public float Value;
public TimeSeriesData(float value)
{
Value = value;
}
}
}
}
Berlaku untuk
DetectIidChangePoint(TransformsCatalog, String, String, Int32, Int32, MartingaleType, Double)
Perhatian
This API method is deprecated, please use the overload with confidence parameter of type double.
Buat IidChangePointEstimator, yang memprediksi titik perubahan dalam rangkaian waktu independen yang didistribusikan secara identik (i.i.d.) berdasarkan estimasi kepadatan kernel adaptif dan skor martingale.
[System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")]
public static Microsoft.ML.Transforms.TimeSeries.IidChangePointEstimator DetectIidChangePoint (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int changeHistoryLength, Microsoft.ML.Transforms.TimeSeries.MartingaleType martingale = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, double eps = 0.1);
public static Microsoft.ML.Transforms.TimeSeries.IidChangePointEstimator DetectIidChangePoint (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int changeHistoryLength, Microsoft.ML.Transforms.TimeSeries.MartingaleType martingale = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, double eps = 0.1);
[<System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")>]
static member DetectIidChangePoint : Microsoft.ML.TransformsCatalog * string * string * int * int * Microsoft.ML.Transforms.TimeSeries.MartingaleType * double -> Microsoft.ML.Transforms.TimeSeries.IidChangePointEstimator
static member DetectIidChangePoint : Microsoft.ML.TransformsCatalog * string * string * int * int * Microsoft.ML.Transforms.TimeSeries.MartingaleType * double -> Microsoft.ML.Transforms.TimeSeries.IidChangePointEstimator
<Extension()>
Public Function DetectIidChangePoint (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Integer, changeHistoryLength As Integer, Optional martingale As MartingaleType = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, Optional eps As Double = 0.1) As IidChangePointEstimator
Parameter
- catalog
- TransformsCatalog
Katalog transformasi.
- outputColumnName
- String
Nama kolom yang dihasilkan dari transformasi inputColumnName
.
Data kolom adalah vektor dari Double. Vektor berisi 4 elemen: pemberitahuan (nilai bukan nol berarti titik perubahan), skor mentah, p-Value, dan skor martingale.
- inputColumnName
- String
Nama kolom yang akan diubah. Data kolom harus Single. Jika diatur ke null
, nilai outputColumnName
akan digunakan sebagai sumber.
- confidence
- Int32
Keyakinan untuk deteksi titik perubahan dalam rentang [0, 100].
- changeHistoryLength
- Int32
Panjang jendela geser pada nilai p untuk menghitung skor martingale.
- martingale
- MartingaleType
Martingale digunakan untuk penilaian.
- eps
- Double
Parameter epsilon untuk Martingale Power.
Mengembalikan
- Atribut
Contoh
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class DetectIidChangePointBatchPrediction
{
// This example creates a time series (list of Data with the i-th element
// corresponding to the i-th time slot). The estimator is applied then to
// identify points where data distribution changed.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with a change
const int Size = 16;
var data = new List<TimeSeriesData>(Size)
{
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
//Change point data.
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
};
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup estimator arguments
string outputColumnName = nameof(ChangePointPrediction.Prediction);
string inputColumnName = nameof(TimeSeriesData.Value);
// The transformed data.
var transformedData = ml.Transforms.DetectIidChangePoint(
outputColumnName, inputColumnName, 95.0d, Size / 4).Fit(dataView)
.Transform(dataView);
// Getting the data of the newly created column as an IEnumerable of
// ChangePointPrediction.
var predictionColumn = ml.Data.CreateEnumerable<ChangePointPrediction>(
transformedData, reuseRowObject: false);
Console.WriteLine($"{outputColumnName} column obtained " +
$"post-transformation.");
Console.WriteLine("Data\tAlert\tScore\tP-Value\tMartingale value");
int k = 0;
foreach (var prediction in predictionColumn)
PrintPrediction(data[k++].Value, prediction);
// Prediction column obtained post-transformation.
// Data Alert Score P-Value Martingale value
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 7 1 7.00 0.00 10298.67 <-- alert is on, predicted changepoint
// 7 0 7.00 0.13 33950.16
// 7 0 7.00 0.26 60866.34
// 7 0 7.00 0.38 78362.04
// 7 0 7.00 0.50 0.01
// 7 0 7.00 0.50 0.00
// 7 0 7.00 0.50 0.00
// 7 0 7.00 0.50 0.00
}
private static void PrintPrediction(float value, ChangePointPrediction
prediction) =>
Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}\t{4:0.00}", value,
prediction.Prediction[0], prediction.Prediction[1],
prediction.Prediction[2], prediction.Prediction[3]);
class ChangePointPrediction
{
[VectorType(4)]
public double[] Prediction { get; set; }
}
class TimeSeriesData
{
public float Value;
public TimeSeriesData(float value)
{
Value = value;
}
}
}
}