Bagikan melalui


LbfgsPoissonRegressionTrainer Kelas

Definisi

IEstimator<TTransformer> untuk melatih model regresi Poisson.

public sealed class LbfgsPoissonRegressionTrainer : Microsoft.ML.Trainers.LbfgsTrainerBase<Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer.Options,Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.PoissonRegressionModelParameters>,Microsoft.ML.Trainers.PoissonRegressionModelParameters>
type LbfgsPoissonRegressionTrainer = class
    inherit LbfgsTrainerBase<LbfgsPoissonRegressionTrainer.Options, RegressionPredictionTransformer<PoissonRegressionModelParameters>, PoissonRegressionModelParameters>
Public NotInheritable Class LbfgsPoissonRegressionTrainer
Inherits LbfgsTrainerBase(Of LbfgsPoissonRegressionTrainer.Options, RegressionPredictionTransformer(Of PoissonRegressionModelParameters), PoissonRegressionModelParameters)
Warisan

Keterangan

Untuk membuat pelatih ini, gunakan LbfgsPoissonRegression atau LbfgsPoissonRegression(Options).

Kolom Input dan Output

Data kolom label input harus Single. Data kolom fitur input harus merupakan vektor berukuran besar yang diketahui dari Single.

Pelatih ini menghasilkan kolom berikut:

Nama Kolom Output Jenis Kolom Deskripsi
Score Single Skor tidak terikat yang diprediksi oleh model.

Karakteristik Pelatih

Tugas pembelajaran mesin Regresi
Apakah normalisasi diperlukan? Ya
Apakah penembolokan diperlukan? Tidak
NuGet yang diperlukan selain Microsoft.ML Tidak ada
Dapat diekspor ke ONNX Ya

Detail Algoritma Pelatihan

Regresi Poisson adalah metode regresi berparameter. Ini mengasumsikan bahwa log rata-rata kondisional variabel dependen mengikuti fungsi linier dari variabel dependen. Dengan asumsi bahwa variabel dependen mengikuti distribusi Poisson, parameter regresi dapat diperkirakan dengan memaksimalkan kemungkinan pengamatan yang diperoleh.

Periksa bagian Lihat Juga untuk tautan ke contoh penggunaan.

Bidang

FeatureColumn

Kolom fitur yang diharapkan pelatih.

(Diperoleh dari TrainerEstimatorBase<TTransformer,TModel>)
LabelColumn

Kolom label yang diharapkan pelatih. Dapat berupa null, yang menunjukkan bahwa label tidak digunakan untuk pelatihan.

(Diperoleh dari TrainerEstimatorBase<TTransformer,TModel>)
WeightColumn

Kolom berat yang diharapkan pelatih. Dapat berupa null, yang menunjukkan bahwa berat tidak digunakan untuk pelatihan.

(Diperoleh dari TrainerEstimatorBase<TTransformer,TModel>)

Properti

Info

IEstimator<TTransformer> untuk melatih model regresi Poisson.

(Diperoleh dari LbfgsTrainerBase<TOptions,TTransformer,TModel>)

Metode

Fit(IDataView, LinearModelParameters)

Melanjutkan pelatihan menggunakan LbfgsPoissonRegressionTrainer yang sudah dilatih linearModel dan mengembalikan RegressionPredictionTransformer<TModel>.

Fit(IDataView)

Melatih dan mengembalikan ITransformer.

(Diperoleh dari TrainerEstimatorBase<TTransformer,TModel>)
GetOutputSchema(SchemaShape)

IEstimator<TTransformer> untuk melatih model regresi Poisson.

(Diperoleh dari TrainerEstimatorBase<TTransformer,TModel>)

Metode Ekstensi

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Tambahkan 'titik pemeriksaan penembolokan' ke rantai estimator. Ini akan memastikan bahwa estimator hilir akan dilatih terhadap data cache. Sangat membantu untuk memiliki titik pemeriksaan penembolokan sebelum pelatih yang mengambil beberapa data berlalu.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Mengingat estimator, kembalikan objek pembungkus yang akan memanggil delegasi setelah Fit(IDataView) dipanggil. Seringkali penting bagi estimator untuk mengembalikan informasi tentang apa yang cocok, itulah sebabnya Fit(IDataView) metode mengembalikan objek yang di ketik secara khusus, bukan hanya umum ITransformer. Namun, pada saat yang sama, IEstimator<TTransformer> sering dibentuk menjadi alur dengan banyak objek, jadi kita mungkin perlu membangun rantai estimator melalui EstimatorChain<TLastTransformer> di mana estimator yang ingin kita dapatkan transformator dimakamkan di suatu tempat dalam rantai ini. Untuk skenario itu, kita dapat melalui metode ini melampirkan delegasi yang akan dipanggil setelah fit dipanggil.

Berlaku untuk

Lihat juga