SymbolicSgdLogisticRegressionBinaryTrainer Kelas
Definisi
Penting
Beberapa informasi terkait produk prarilis yang dapat diubah secara signifikan sebelum dirilis. Microsoft tidak memberikan jaminan, tersirat maupun tersurat, sehubungan dengan informasi yang diberikan di sini.
IEstimator<TTransformer> untuk memprediksi target menggunakan model klasifikasi biner linier yang dilatih dengan penurunan gradien stochastic simbolis.
public sealed class SymbolicSgdLogisticRegressionBinaryTrainer : Microsoft.ML.Trainers.TrainerEstimatorBase<Microsoft.ML.Data.BinaryPredictionTransformer<Microsoft.ML.Calibrators.CalibratedModelParametersBase<Microsoft.ML.Trainers.LinearBinaryModelParameters,Microsoft.ML.Calibrators.PlattCalibrator>>,Microsoft.ML.Calibrators.CalibratedModelParametersBase<Microsoft.ML.Trainers.LinearBinaryModelParameters,Microsoft.ML.Calibrators.PlattCalibrator>>
type SymbolicSgdLogisticRegressionBinaryTrainer = class
inherit TrainerEstimatorBase<BinaryPredictionTransformer<CalibratedModelParametersBase<LinearBinaryModelParameters, PlattCalibrator>>, CalibratedModelParametersBase<LinearBinaryModelParameters, PlattCalibrator>>
Public NotInheritable Class SymbolicSgdLogisticRegressionBinaryTrainer
Inherits TrainerEstimatorBase(Of BinaryPredictionTransformer(Of CalibratedModelParametersBase(Of LinearBinaryModelParameters, PlattCalibrator)), CalibratedModelParametersBase(Of LinearBinaryModelParameters, PlattCalibrator))
- Warisan
-
TrainerEstimatorBase<BinaryPredictionTransformer<CalibratedModelParametersBase<LinearBinaryModelParameters,PlattCalibrator>>,CalibratedModelParametersBase<LinearBinaryModelParameters,PlattCalibrator>>SymbolicSgdLogisticRegressionBinaryTrainer
Keterangan
Untuk membuat pelatih ini, gunakan SymbolicStochasticGradientDescent atau SymbolicStochasticGradientDescent(Options).
Kolom Input dan Output
Data kolom label input harus Boolean. Data kolom fitur input harus merupakan vektor berukuran besar yang diketahui dari Single.
Pelatih ini menghasilkan kolom berikut:
Nama Kolom Output | Jenis Kolom | Deskripsi | |
---|---|---|---|
Score |
Single | Skor tidak terikat yang dihitung oleh model. | |
PredictedLabel |
Boolean | Label yang diprediksi, berdasarkan tanda skor. Skor negatif memetakan ke false dan skor positif memetakan ke true . |
|
Probability |
Single | Probabilitas dihitung dengan mengkalibrasi skor memiliki true sebagai label. Nilai probabilitas berada dalam rentang [0, 1]. |
Karakteristik Pelatih
Tugas pembelajaran mesin | Klasifikasi biner |
Apakah normalisasi diperlukan? | Ya |
Apakah penembolokan diperlukan? | Tidak |
NuGet yang diperlukan selain Microsoft.ML | Microsoft.ML.Mkl.Components |
Dapat diekspor ke ONNX | Ya |
Detail Algoritma Pelatihan
Penurunan gradien stochastic simbolis adalah algoritma yang membuat prediksinya dengan menemukan hiperplane yang memisahkan. Misalnya, dengan nilai fitur $f 0, f1,..., f_{D-1}$, prediksi diberikan dengan menentukan sisi hyperplane apa yang termasuk dalam titik. Itu sama dengan tanda jumlah tertimbang fitur, yaitu $\sum_{i = 0}^{D-1} (w_i * f_i) + b$, di mana $w_0, w_1,..., w_{D-1}$ adalah bobot yang dihitung oleh algoritma, dan $b$ adalah bias yang dihitung oleh algoritma.
Meskipun sebagian besar algoritma penurunan gradien stochastic simbolis secara inheren berurutan - pada setiap langkah, pemrosesan contoh saat ini tergantung pada parameter yang dipelajari dari contoh sebelumnya. Algoritma ini melatih model lokal dalam utas terpisah dan cobminer model probabilistik yang memungkinkan model lokal digabungkan untuk menghasilkan hasil yang sama seperti apa yang akan dihasilkan oleh penurunan gradien stochastic simbolis berurutan, sebagai harapan.
Untuk informasi selengkapnya lihat Penurunan Gradien Paralel Stochastic dengan Penggabung Suara.
Periksa bagian Lihat Juga untuk tautan ke contoh penggunaan.
Bidang
FeatureColumn |
Kolom fitur yang diharapkan pelatih. (Diperoleh dari TrainerEstimatorBase<TTransformer,TModel>) |
LabelColumn |
Kolom label yang diharapkan pelatih. Dapat berupa |
WeightColumn |
Kolom berat yang diharapkan pelatih. Dapat berupa |
Properti
Info |
IEstimator<TTransformer> untuk memprediksi target menggunakan model klasifikasi biner linier yang dilatih dengan penurunan gradien stochastic simbolis. |
Metode
Fit(IDataView, LinearModelParameters) |
Melanjutkan pelatihan SymbolicSgdLogisticRegressionBinaryTrainer menggunakan yang sudah dilatih |
Fit(IDataView) |
Melatih dan mengembalikan ITransformer. (Diperoleh dari TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
IEstimator<TTransformer> untuk memprediksi target menggunakan model klasifikasi biner linier yang dilatih dengan penurunan gradien stochastic simbolis. (Diperoleh dari TrainerEstimatorBase<TTransformer,TModel>) |
Metode Ekstensi
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Tambahkan 'titik pemeriksaan penembolokan' ke rantai estimator. Ini akan memastikan bahwa estimator hilir akan dilatih terhadap data cache. Sangat membantu untuk memiliki titik pemeriksaan penembolokan sebelum pelatih yang mengambil beberapa data berlalu. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Mengingat estimator, kembalikan objek pembungkus yang akan memanggil delegasi setelah Fit(IDataView) dipanggil. Seringkali penting bagi estimator untuk mengembalikan informasi tentang apa yang cocok, itulah sebabnya Fit(IDataView) metode mengembalikan objek yang ditik secara khusus, bukan hanya umum ITransformer. Namun, pada saat yang sama, IEstimator<TTransformer> sering dibentuk menjadi alur dengan banyak objek, jadi kita mungkin perlu membangun rantai estimator melalui EstimatorChain<TLastTransformer> tempat estimator yang ingin kita dapatkan transformator dikubur di suatu tempat dalam rantai ini. Untuk skenario itu, kita dapat melalui metode ini melampirkan delegasi yang akan dipanggil setelah pas dipanggil. |
Berlaku untuk
Lihat juga
- SymbolicSgdLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, Int32)
- SymbolicSgdLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, SymbolicSgdLogisticRegressionBinaryTrainer+Options)
- SymbolicSgdLogisticRegressionBinaryTrainer.Options