Bagikan melalui


Kelas System.Random

Artikel ini menyediakan keterangan tambahan untuk dokumentasi referensi untuk API ini.

Kelas ini Random mewakili generator angka pseudo-random, yang merupakan algoritma yang menghasilkan urutan angka yang memenuhi persyaratan statistik tertentu untuk keacakan.

Angka pseudo-random dipilih dengan probabilitas yang sama dari sekumpulan angka terbatas. Angka yang dipilih tidak sepenuhnya acak karena algoritma matematika digunakan untuk memilihnya, tetapi cukup acak untuk tujuan praktis. Implementasi Random kelas didasarkan pada versi yang dimodifikasi dari algoritma generator angka acak subtraktif Donald E. Knuth. Untuk informasi selengkapnya, lihat D. E. Knuth. Seni Pemrograman Komputer, Volume 2: Algoritma Seminumerik. Addison-Wesley, Reading, MA, edisi ketiga, 1997.

Untuk menghasilkan angka acak yang aman secara kriptografis, seperti angka yang cocok untuk membuat kata sandi acak, gunakan salah satu metode statis di System.Security.Cryptography.RandomNumberGenerator kelas .

Membuat instans generator angka acak

Anda membuat instans generator angka acak dengan memberikan nilai awal (nilai awal untuk algoritma pembuatan angka pseudo-acak) ke Random konstruktor kelas. Anda dapat menyediakan nilai benih baik secara eksplisit maupun implisit:

  • Random(Int32) Konstruktor menggunakan nilai benih eksplisit yang Anda berikan.
  • Random() Konstruktor menggunakan nilai seed default. Ini adalah cara paling umum untuk membuat instans generator angka acak.

Di .NET Framework, nilai seed default bergantung pada waktu. Di .NET Core, nilai seed default dihasilkan oleh generator angka pseudo-random thread-static.

Jika seed yang sama digunakan untuk objek terpisah Random , mereka akan menghasilkan rangkaian angka acak yang sama. Ini dapat berguna untuk membuat rangkaian pengujian yang memproses nilai acak, atau untuk memutar ulang game yang mendapatkan data mereka dari angka acak. Namun, perhatikan bahwa objek dalam proses yang Random berjalan di bawah versi .NET Framework yang berbeda mungkin mengembalikan berbagai angka acak meskipun dibuat dengan nilai seed yang identik.

Untuk menghasilkan urutan angka acak yang berbeda, Anda dapat membuat nilai benih tergantung waktu, sehingga menghasilkan seri yang berbeda dengan setiap instans Randombaru . Konstruktor berparameter Random(Int32) dapat mengambil Int32 nilai berdasarkan jumlah kutu dalam waktu saat ini, sedangkan konstruktor tanpa Random() parameter menggunakan jam sistem untuk menghasilkan nilai benihnya. Namun, hanya pada .NET Framework, karena jam memiliki resolusi terbatas, menggunakan konstruktor tanpa parameter untuk membuat objek yang berbeda Random secara berurutan menciptakan generator angka acak yang menghasilkan urutan angka acak yang identik. Contoh berikut menggambarkan bagaimana dua Random objek yang dibuat secara berurutan dalam aplikasi .NET Framework menghasilkan serangkaian angka acak yang identik. Pada sebagian besar sistem Windows, Random objek yang dibuat dalam 15 milidetik satu sama lain kemungkinan memiliki nilai benih yang identik.

byte[] bytes1 = new byte[100];
byte[] bytes2 = new byte[100];
Random rnd1 = new Random();
Random rnd2 = new Random();

rnd1.NextBytes(bytes1);
rnd2.NextBytes(bytes2);

Console.WriteLine("First Series:");
for (int ctr = bytes1.GetLowerBound(0);
     ctr <= bytes1.GetUpperBound(0);
     ctr++) {
   Console.Write("{0, 5}", bytes1[ctr]);
   if ((ctr + 1) % 10 == 0) Console.WriteLine();
}

Console.WriteLine();

Console.WriteLine("Second Series:");
for (int ctr = bytes2.GetLowerBound(0);
     ctr <= bytes2.GetUpperBound(0);
     ctr++) {
   Console.Write("{0, 5}", bytes2[ctr]);
   if ((ctr + 1) % 10 == 0) Console.WriteLine();
}

// The example displays output like the following:
//       First Series:
//          97  129  149   54   22  208  120  105   68  177
//         113  214   30  172   74  218  116  230   89   18
//          12  112  130  105  116  180  190  200  187  120
//           7  198  233  158   58   51   50  170   98   23
//          21    1  113   74  146  245   34  255   96   24
//         232  255   23    9  167  240  255   44  194   98
//          18  175  173  204  169  171  236  127  114   23
//         167  202  132   65  253   11  254   56  214  127
//         145  191  104  163  143    7  174  224  247   73
//          52    6  231  255    5  101   83  165  160  231
//
//       Second Series:
//          97  129  149   54   22  208  120  105   68  177
//         113  214   30  172   74  218  116  230   89   18
//          12  112  130  105  116  180  190  200  187  120
//           7  198  233  158   58   51   50  170   98   23
//          21    1  113   74  146  245   34  255   96   24
//         232  255   23    9  167  240  255   44  194   98
//          18  175  173  204  169  171  236  127  114   23
//         167  202  132   65  253   11  254   56  214  127
//         145  191  104  163  143    7  174  224  247   73
//          52    6  231  255    5  101   83  165  160  231
let bytes1 = Array.zeroCreate 100
let bytes2 = Array.zeroCreate 100
let rnd1 = Random()
let rnd2 = Random()

rnd1.NextBytes bytes1 
rnd2.NextBytes bytes2 

printfn "First Series"
for i = bytes1.GetLowerBound 0 to bytes1.GetUpperBound 0 do
    printf "%5i" bytes1.[i]
    if (i + 1) % 10 = 0 then printfn ""

printfn ""

printfn "Second Series"
for i = bytes2.GetLowerBound 0 to bytes2.GetUpperBound 0 do
    printf "%5i" bytes2.[i]
    if (i + 1) % 10 = 0 then printfn ""

// The example displays output like the following:
//       First Series:
//          97  129  149   54   22  208  120  105   68  177
//         113  214   30  172   74  218  116  230   89   18
//          12  112  130  105  116  180  190  200  187  120
//           7  198  233  158   58   51   50  170   98   23
//          21    1  113   74  146  245   34  255   96   24
//         232  255   23    9  167  240  255   44  194   98
//          18  175  173  204  169  171  236  127  114   23
//         167  202  132   65  253   11  254   56  214  127
//         145  191  104  163  143    7  174  224  247   73
//          52    6  231  255    5  101   83  165  160  231
//
//       Second Series:
//          97  129  149   54   22  208  120  105   68  177
//         113  214   30  172   74  218  116  230   89   18
//          12  112  130  105  116  180  190  200  187  120
//           7  198  233  158   58   51   50  170   98   23
//          21    1  113   74  146  245   34  255   96   24
//         232  255   23    9  167  240  255   44  194   98
//          18  175  173  204  169  171  236  127  114   23
//         167  202  132   65  253   11  254   56  214  127
//         145  191  104  163  143    7  174  224  247   73
//          52    6  231  255    5  101   83  165  160  231
Module modMain

   Public Sub Main()
      Dim bytes1(99), bytes2(99) As Byte
      Dim rnd1 As New Random()
      Dim rnd2 As New Random()
      
      rnd1.NextBytes(bytes1)
      rnd2.NextBytes(bytes2)
      
      Console.WriteLine("First Series:")
      For ctr As Integer = bytes1.GetLowerBound(0) to bytes1.GetUpperBound(0)
         Console.Write("{0, 5}", bytes1(ctr))
         If (ctr + 1) Mod 10 = 0 Then Console.WriteLine()
      Next 
      Console.WriteLine()
      Console.WriteLine("Second Series:")        
      For ctr As Integer = bytes2.GetLowerBound(0) to bytes2.GetUpperBound(0)
         Console.Write("{0, 5}", bytes2(ctr))
         If (ctr + 1) Mod 10 = 0 Then Console.WriteLine()
      Next   
   End Sub
End Module
' The example displays output like the following:
'       First Series:
'          97  129  149   54   22  208  120  105   68  177
'         113  214   30  172   74  218  116  230   89   18
'          12  112  130  105  116  180  190  200  187  120
'           7  198  233  158   58   51   50  170   98   23
'          21    1  113   74  146  245   34  255   96   24
'         232  255   23    9  167  240  255   44  194   98
'          18  175  173  204  169  171  236  127  114   23
'         167  202  132   65  253   11  254   56  214  127
'         145  191  104  163  143    7  174  224  247   73
'          52    6  231  255    5  101   83  165  160  231
'       
'       Second Series:
'          97  129  149   54   22  208  120  105   68  177
'         113  214   30  172   74  218  116  230   89   18
'          12  112  130  105  116  180  190  200  187  120
'           7  198  233  158   58   51   50  170   98   23
'          21    1  113   74  146  245   34  255   96   24
'         232  255   23    9  167  240  255   44  194   98
'          18  175  173  204  169  171  236  127  114   23
'         167  202  132   65  253   11  254   56  214  127
'         145  191  104  163  143    7  174  224  247   73
'          52    6  231  255    5  101   83  165  160  231

Untuk menghindari masalah ini, buat satu Random objek alih-alih beberapa objek. Perhatikan bahwa Random kelas di .NET Core tidak memiliki batasan ini.

Hindari beberapa instansiasi

Pada .NET Framework, menginisialisasi dua generator angka acak dalam perulangan yang ketat atau berturut-turut cepat menciptakan dua generator angka acak yang dapat menghasilkan urutan angka acak yang identik. Dalam kebanyakan kasus, ini bukan niat pengembang dan dapat menyebabkan masalah performa, karena membuat instans dan menginisialisasi generator angka acak adalah proses yang relatif mahal.

Baik untuk meningkatkan performa maupun untuk menghindari pembuatan generator angka acak terpisah yang secara tidak sengaja menghasilkan urutan numerik yang identik, kami sarankan Anda membuat satu Random objek untuk menghasilkan banyak angka acak dari waktu ke waktu, alih-alih membuat objek baru Random untuk menghasilkan satu angka acak.

Namun, Random kelas ini tidak aman untuk utas. Jika Anda memanggil Random metode dari beberapa utas, ikuti panduan yang dibahas di bagian berikutnya.

Keamanan utas

Alih-alih membuat instans objek individual Random , kami sarankan Anda membuat satu Random instans untuk menghasilkan semua angka acak yang diperlukan oleh aplikasi Anda. Namun, Random objek tidak aman utas. Jika aplikasi Anda memanggil Random metode dari beberapa utas, Anda harus menggunakan objek sinkronisasi untuk memastikan bahwa hanya satu utas yang dapat mengakses generator nomor acak pada satu waktu. Jika Anda tidak memastikan bahwa Random objek diakses dengan cara aman utas, panggilan ke metode yang mengembalikan angka acak mengembalikan 0.

Contoh berikut menggunakan Pernyataan kunci C#, fungsi kunci F# dan pernyataan Visual Basic SyncLock untuk memastikan bahwa generator angka acak tunggal diakses oleh 11 utas dengan cara aman utas. Setiap utas menghasilkan 2 juta angka acak, menghitung jumlah angka acak yang dihasilkan dan menghitung jumlahnya, lalu memperbarui total untuk semua utas setelah selesai dieksekusi.

using System;
using System.Threading;

public class Example13
{
    [ThreadStatic] static double previous = 0.0;
    [ThreadStatic] static int perThreadCtr = 0;
    [ThreadStatic] static double perThreadTotal = 0.0;
    static CancellationTokenSource source;
    static CountdownEvent countdown;
    static Object randLock, numericLock;
    static Random rand;
    double totalValue = 0.0;
    int totalCount = 0;

    public Example13()
    {
        rand = new Random();
        randLock = new Object();
        numericLock = new Object();
        countdown = new CountdownEvent(1);
        source = new CancellationTokenSource();
    }

    public static void Main()
    {
        Example13 ex = new Example13();
        Thread.CurrentThread.Name = "Main";
        ex.Execute();
    }

    private void Execute()
    {
        CancellationToken token = source.Token;

        for (int threads = 1; threads <= 10; threads++)
        {
            Thread newThread = new Thread(this.GetRandomNumbers);
            newThread.Name = threads.ToString();
            newThread.Start(token);
        }
        this.GetRandomNumbers(token);

        countdown.Signal();
        // Make sure all threads have finished.
        countdown.Wait();
        source.Dispose();

        Console.WriteLine("\nTotal random numbers generated: {0:N0}", totalCount);
        Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue);
        Console.WriteLine("Random number mean: {0:N4}", totalValue / totalCount);
    }

    private void GetRandomNumbers(Object o)
    {
        CancellationToken token = (CancellationToken)o;
        double result = 0.0;
        countdown.AddCount(1);

        try
        {
            for (int ctr = 0; ctr < 2000000; ctr++)
            {
                // Make sure there's no corruption of Random.
                token.ThrowIfCancellationRequested();

                lock (randLock)
                {
                    result = rand.NextDouble();
                }
                // Check for corruption of Random instance.
                if ((result == previous) && result == 0)
                {
                    source.Cancel();
                }
                else
                {
                    previous = result;
                }
                perThreadCtr++;
                perThreadTotal += result;
            }

            Console.WriteLine("Thread {0} finished execution.",
                              Thread.CurrentThread.Name);
            Console.WriteLine("Random numbers generated: {0:N0}", perThreadCtr);
            Console.WriteLine("Sum of random numbers: {0:N2}", perThreadTotal);
            Console.WriteLine("Random number mean: {0:N4}\n", perThreadTotal / perThreadCtr);

            // Update overall totals.
            lock (numericLock)
            {
                totalCount += perThreadCtr;
                totalValue += perThreadTotal;
            }
        }
        catch (OperationCanceledException e)
        {
            Console.WriteLine("Corruption in Thread {1}", e.GetType().Name, Thread.CurrentThread.Name);
        }
        finally
        {
            countdown.Signal();
        }
    }
}
// The example displays output like the following:
//       Thread 6 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,491.05
//       Random number mean: 0.5002
//
//       Thread 10 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,329.64
//       Random number mean: 0.4997
//
//       Thread 4 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,166.89
//       Random number mean: 0.5001
//
//       Thread 8 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,628.37
//       Random number mean: 0.4998
//
//       Thread Main finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,920.89
//       Random number mean: 0.5000
//
//       Thread 3 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,370.45
//       Random number mean: 0.4997
//
//       Thread 7 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,330.92
//       Random number mean: 0.4997
//
//       Thread 9 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,172.79
//       Random number mean: 0.5001
//
//       Thread 5 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,079.43
//       Random number mean: 0.5000
//
//       Thread 1 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,817.91
//       Random number mean: 0.4999
//
//       Thread 2 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,930.63
//       Random number mean: 0.5000
//
//
//       Total random numbers generated: 22,000,000
//       Total sum of all random numbers: 10,998,238.98
//       Random number mean: 0.4999
open System
open System.Threading

type Example() =
    [<ThreadStatic; DefaultValue>]
    static val mutable private previous : float
    
    [<ThreadStatic; DefaultValue>]
    static val mutable private perThreadCtr : int

    [<ThreadStatic; DefaultValue>]
    static val mutable private perThreadTotal : float

    static let source = new CancellationTokenSource()
    static let countdown = new CountdownEvent(1)
    static let randLock = obj ()
    static let numericLock = obj ()
    static let rand = Random()

    let mutable totalValue = 0.0
    let mutable totalCount = 0

    member _.GetRandomNumbers(token: CancellationToken) =
        let mutable result = 0.0
        countdown.AddCount 1
        try 
            try
                for _ = 0 to 1999999 do
                    // Make sure there's no corruption of Random.
                    token.ThrowIfCancellationRequested()

                    lock randLock (fun () -> 
                        result <- rand.NextDouble() )

                    // Check for corruption of Random instance.
                    if result = Example.previous && result = 0.0 then 
                        source.Cancel()
                    else
                        Example.previous <- result
                        
                    Example.perThreadCtr <- Example.perThreadCtr + 1
                    Example.perThreadTotal <- Example.perThreadTotal + result

                // Update overall totals.
                lock numericLock (fun () ->
                    // Show result.
                    printfn "Thread %s finished execution." Thread.CurrentThread.Name
                    printfn $"Random numbers generated: {Example.perThreadCtr:N0}" 
                    printfn $"Sum of random numbers: {Example.perThreadTotal:N2}" 
                    printfn $"Random number mean: {(Example.perThreadTotal / float Example.perThreadCtr):N4}\n"
                    
                    // Update overall totals.
                    totalCount <- totalCount + Example.perThreadCtr
                    totalValue <- totalValue + Example.perThreadTotal)

            with :? OperationCanceledException as e -> 
                printfn "Corruption in Thread %s %s" (e.GetType().Name) Thread.CurrentThread.Name
        finally
            countdown.Signal() |> ignore

    member this.Execute() =
        let token = source.Token
        for i = 1 to 10 do 
            let newThread = Thread(fun () -> this.GetRandomNumbers token)
            newThread.Name <- string i
            newThread.Start()
        this.GetRandomNumbers token
        
        countdown.Signal() |> ignore

        countdown.Wait()

        source.Dispose()

        printfn $"\nTotal random numbers generated: {totalCount:N0}"
        printfn $"Total sum of all random numbers: {totalValue:N2}"
        printfn $"Random number mean: {(totalValue / float totalCount):N4}"

let ex = Example()
Thread.CurrentThread.Name <- "Main"
ex.Execute()

// The example displays output like the following:
//       Thread 6 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,491.05
//       Random number mean: 0.5002
//
//       Thread 10 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,329.64
//       Random number mean: 0.4997
//
//       Thread 4 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,166.89
//       Random number mean: 0.5001
//
//       Thread 8 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,628.37
//       Random number mean: 0.4998
//
//       Thread Main finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,920.89
//       Random number mean: 0.5000
//
//       Thread 3 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,370.45
//       Random number mean: 0.4997
//
//       Thread 7 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,330.92
//       Random number mean: 0.4997
//
//       Thread 9 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,172.79
//       Random number mean: 0.5001
//
//       Thread 5 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,079.43
//       Random number mean: 0.5000
//
//       Thread 1 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,817.91
//       Random number mean: 0.4999
//
//       Thread 2 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,930.63
//       Random number mean: 0.5000
//
//
//       Total random numbers generated: 22,000,000
//       Total sum of all random numbers: 10,998,238.98
//       Random number mean: 0.4999
Imports System.Threading

Module Example15
    <ThreadStatic> Dim previous As Double = 0.0
    <ThreadStatic> Dim perThreadCtr As Integer = 0
    <ThreadStatic> Dim perThreadTotal As Double = 0.0
    Dim source As New CancellationTokenSource()
    Dim countdown As New CountdownEvent(1)
    Dim randLock As New Object()
    Dim numericLock As New Object()
    Dim rand As New Random()
    Dim totalValue As Double = 0.0
    Dim totalCount As Integer = 0

    Public Sub Main()
        Thread.CurrentThread.Name = "Main"

        Dim token As CancellationToken = source.Token
        For threads As Integer = 1 To 10
            Dim newThread As New Thread(AddressOf GetRandomNumbers)
            newThread.Name = threads.ToString()
            newThread.Start(token)
        Next
        GetRandomNumbers(token)

        countdown.Signal()
        ' Make sure all threads have finished.
        countdown.Wait()

        Console.WriteLine()
        Console.WriteLine("Total random numbers generated: {0:N0}", totalCount)
        Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue)
        Console.WriteLine("Random number mean: {0:N4}", totalValue / totalCount)
    End Sub

    Private Sub GetRandomNumbers(o As Object)
        Dim token As CancellationToken = CType(o, CancellationToken)
        Dim result As Double = 0.0
        countdown.AddCount(1)

        Try
            For ctr As Integer = 1 To 2000000
                ' Make sure there's no corruption of Random.
                token.ThrowIfCancellationRequested()

                SyncLock randLock
                    result = rand.NextDouble()
                End SyncLock
                ' Check for corruption of Random instance.
                If result = previous AndAlso result = 0 Then
                    source.Cancel()
                Else
                    previous = result
                End If
                perThreadCtr += 1
                perThreadTotal += result
            Next

            Console.WriteLine("Thread {0} finished execution.",
                           Thread.CurrentThread.Name)
            Console.WriteLine("Random numbers generated: {0:N0}", perThreadCtr)
            Console.WriteLine("Sum of random numbers: {0:N2}", perThreadTotal)
            Console.WriteLine("Random number mean: {0:N4}", perThreadTotal / perThreadCtr)
            Console.WriteLine()

            ' Update overall totals.
            SyncLock numericLock
                totalCount += perThreadCtr
                totalValue += perThreadTotal
            End SyncLock
        Catch e As OperationCanceledException
            Console.WriteLine("Corruption in Thread {1}", e.GetType().Name, Thread.CurrentThread.Name)
        Finally
            countdown.Signal()
            source.Dispose()
        End Try
    End Sub
End Module
' The example displays output like the following:
'       Thread 6 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,491.05
'       Random number mean: 0.5002
'       
'       Thread 10 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,329.64
'       Random number mean: 0.4997
'       
'       Thread 4 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,166.89
'       Random number mean: 0.5001
'       
'       Thread 8 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,628.37
'       Random number mean: 0.4998
'       
'       Thread Main finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,920.89
'       Random number mean: 0.5000
'       
'       Thread 3 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,370.45
'       Random number mean: 0.4997
'       
'       Thread 7 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,330.92
'       Random number mean: 0.4997
'       
'       Thread 9 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,172.79
'       Random number mean: 0.5001
'       
'       Thread 5 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,079.43
'       Random number mean: 0.5000
'       
'       Thread 1 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,817.91
'       Random number mean: 0.4999
'       
'       Thread 2 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,930.63
'       Random number mean: 0.5000
'       
'       
'       Total random numbers generated: 22,000,000
'       Total sum of all random numbers: 10,998,238.98
'       Random number mean: 0.4999

Contoh ini memastikan keamanan utas dengan cara berikut:

  • Atribut ThreadStaticAttribute digunakan untuk menentukan variabel thread-local yang melacak jumlah total angka acak yang dihasilkan dan jumlahnya untuk setiap utas.
  • Kunci ( lock pernyataan dalam C#, lock fungsi di F# dan SyncLock pernyataan di Visual Basic) melindungi akses ke variabel untuk jumlah total dan jumlah semua angka acak yang dihasilkan pada semua utas.
  • Semaphore ( CountdownEvent objek) digunakan untuk memastikan bahwa utas utama memblokir hingga semua utas lainnya menyelesaikan eksekusi.
  • Contoh memeriksa apakah generator angka acak telah rusak dengan menentukan apakah dua panggilan berturut-turut ke metode pembuatan angka acak mengembalikan 0. Jika kerusakan terdeteksi, contohnya menggunakan CancellationTokenSource objek untuk memberi sinyal bahwa semua utas harus dibatalkan.
  • Sebelum menghasilkan setiap angka acak, setiap utas memeriksa status CancellationToken objek. Jika pembatalan diminta, contoh memanggil metode untuk membatalkan utas CancellationToken.ThrowIfCancellationRequested .

Contoh berikut identik dengan yang pertama, kecuali menggunakan Task objek dan ekspresi lambda alih-alih Thread objek.

using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;

public class Example15
{
    static Object randLock, numericLock;
    static Random rand;
    static CancellationTokenSource source;
    double totalValue = 0.0;
    int totalCount = 0;

    public Example15()
    {
        rand = new Random();
        randLock = new Object();
        numericLock = new Object();
        source = new CancellationTokenSource();
    }

    public static async Task Main()
    {
        Example15 ex = new Example15();
        Thread.CurrentThread.Name = "Main";
        await ex.Execute();
    }

    private async Task Execute()
    {
        List<Task> tasks = new List<Task>();

        for (int ctr = 0; ctr <= 10; ctr++)
        {
            CancellationToken token = source.Token;
            int taskNo = ctr;
            tasks.Add(Task.Run(() =>
               {
                   double previous = 0.0;
                   int taskCtr = 0;
                   double taskTotal = 0.0;
                   double result = 0.0;

                   for (int n = 0; n < 2000000; n++)
                   {
                       // Make sure there's no corruption of Random.
                       token.ThrowIfCancellationRequested();

                       lock (randLock)
                       {
                           result = rand.NextDouble();
                       }
                       // Check for corruption of Random instance.
                       if ((result == previous) && result == 0)
                       {
                           source.Cancel();
                       }
                       else
                       {
                           previous = result;
                       }
                       taskCtr++;
                       taskTotal += result;
                   }

                   // Show result.
                   Console.WriteLine("Task {0} finished execution.", taskNo);
                   Console.WriteLine("Random numbers generated: {0:N0}", taskCtr);
                   Console.WriteLine("Sum of random numbers: {0:N2}", taskTotal);
                   Console.WriteLine("Random number mean: {0:N4}\n", taskTotal / taskCtr);

                   // Update overall totals.
                   lock (numericLock)
                   {
                       totalCount += taskCtr;
                       totalValue += taskTotal;
                   }
               },
            token));
        }
        try
        {
            await Task.WhenAll(tasks.ToArray());
            Console.WriteLine("\nTotal random numbers generated: {0:N0}", totalCount);
            Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue);
            Console.WriteLine("Random number mean: {0:N4}", totalValue / totalCount);
        }
        catch (AggregateException e)
        {
            foreach (Exception inner in e.InnerExceptions)
            {
                TaskCanceledException canc = inner as TaskCanceledException;
                if (canc != null)
                    Console.WriteLine("Task #{0} cancelled.", canc.Task.Id);
                else
                    Console.WriteLine("Exception: {0}", inner.GetType().Name);
            }
        }
        finally
        {
            source.Dispose();
        }
    }
}
// The example displays output like the following:
//       Task 1 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,502.47
//       Random number mean: 0.5003
//
//       Task 0 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,445.63
//       Random number mean: 0.5002
//
//       Task 2 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,556.04
//       Random number mean: 0.5003
//
//       Task 3 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,178.87
//       Random number mean: 0.5001
//
//       Task 4 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,819.17
//       Random number mean: 0.4999
//
//       Task 5 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,190.58
//       Random number mean: 0.5001
//
//       Task 6 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,720.21
//       Random number mean: 0.4999
//
//       Task 7 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,000.96
//       Random number mean: 0.4995
//
//       Task 8 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,499.33
//       Random number mean: 0.4997
//
//       Task 9 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,193.25
//       Random number mean: 0.5001
//
//       Task 10 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,960.82
//       Random number mean: 0.5000
//
//
//       Total random numbers generated: 22,000,000
//       Total sum of all random numbers: 11,000,067.33
//       Random number mean: 0.5000
open System
open System.Threading
open System.Threading.Tasks

type Example() =
    static let source = new CancellationTokenSource()
    static let rand = Random()

    static let randLock = obj ()
    static let numericLock = obj ()

    let mutable totalValue = 0.0
    let mutable totalCount = 0

    member _.Execute() =
        use source = source // Dispose of the CancellationTokenSource when we're done with it.
        let token = source.Token

        let tasks =
            [| for i = 0 to 10 do
                   Task.Run(
                       (fun () ->
                           let mutable previous = 0.0
                           let mutable taskCtr = 0
                           let mutable taskTotal = 0.0
                           let mutable result = 0.0

                           for _ = 1 to 2000000 do
                               // Make sure there's no corruption of Random.
                               token.ThrowIfCancellationRequested()

                               lock randLock (fun () -> result <- rand.NextDouble())

                               // Check for corruption of Random instance.
                               if result = previous && result = 0.0 then
                                   source.Cancel()
                               else
                                   previous <- result

                               taskCtr <- taskCtr + 1
                               taskTotal <- taskTotal + result

                           lock numericLock (fun () ->
                               // Show result.
                               printfn "Task %i finished execution." i
                               printfn $"Random numbers generated: {taskCtr:N0}"
                               printfn $"Sum of random numbers: {taskTotal:N2}"
                               printfn $"Random number mean: {(taskTotal / float taskCtr):N4}\n"

                               // Update overall totals.
                               totalCount <- totalCount + taskCtr
                               totalValue <- totalValue + taskTotal)),
                       token
                   ) |]

        try
            // Run tasks with F# Async.
            Task.WhenAll tasks
            |> Async.AwaitTask
            |> Async.RunSynchronously

            printfn $"\nTotal random numbers generated: {totalCount:N0}"
            printfn $"Total sum of all random numbers: {totalValue:N2}"
            printfn $"Random number mean: {(totalValue / float totalCount):N4}"
        with
        | :? AggregateException as e ->
            for inner in e.InnerExceptions do
                match inner with
                | :? TaskCanceledException as canc ->
                    if canc <> null then
                        printfn $"Task #{canc.Task.Id} cancelled"
                    else
                        printfn $"Exception: {inner.GetType().Name}"
                | _ -> ()

let ex = Example()
Thread.CurrentThread.Name <- "Main"
ex.Execute()

// The example displays output like the following:
//       Task 1 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,502.47
//       Random number mean: 0.5003
//
//       Task 0 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,445.63
//       Random number mean: 0.5002
//
//       Task 2 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,556.04
//       Random number mean: 0.5003
//
//       Task 3 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,178.87
//       Random number mean: 0.5001
//
//       Task 4 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,819.17
//       Random number mean: 0.4999
//
//       Task 5 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,190.58
//       Random number mean: 0.5001
//
//       Task 6 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,720.21
//       Random number mean: 0.4999
//
//       Task 7 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,000.96
//       Random number mean: 0.4995
//
//       Task 8 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,499.33
//       Random number mean: 0.4997
//
//       Task 9 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,193.25
//       Random number mean: 0.5001
//
//       Task 10 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,960.82
//       Random number mean: 0.5000
//
//
//       Total random numbers generated: 22,000,000
//       Total sum of all random numbers: 11,000,067.33
//       Random number mean: 0.5000
Imports System.Collections.Generic
Imports System.Threading
Imports System.Threading.Tasks

Module Example16
    Dim source As New CancellationTokenSource()
    Dim randLock As New Object()
    Dim numericLock As New Object()
    Dim rand As New Random()
    Dim totalValue As Double = 0.0
    Dim totalCount As Integer = 0

    Public Sub Main()
        Dim tasks As New List(Of Task)()

        For ctr As Integer = 1 To 10
            Dim token As CancellationToken = source.Token
            Dim taskNo As Integer = ctr
            tasks.Add(Task.Run(
                   Sub()
                       Dim previous As Double = 0.0
                       Dim taskCtr As Integer = 0
                       Dim taskTotal As Double = 0.0
                       Dim result As Double = 0.0

                       For n As Integer = 1 To 2000000
                           ' Make sure there's no corruption of Random.
                           token.ThrowIfCancellationRequested()

                           SyncLock randLock
                               result = rand.NextDouble()
                           End SyncLock
                           ' Check for corruption of Random instance.
                           If result = previous AndAlso result = 0 Then
                               source.Cancel()
                           Else
                               previous = result
                           End If
                           taskCtr += 1
                           taskTotal += result
                       Next

                       ' Show result.
                       Console.WriteLine("Task {0} finished execution.", taskNo)
                       Console.WriteLine("Random numbers generated: {0:N0}", taskCtr)
                       Console.WriteLine("Sum of random numbers: {0:N2}", taskTotal)
                       Console.WriteLine("Random number mean: {0:N4}", taskTotal / taskCtr)
                       Console.WriteLine()

                       ' Update overall totals.
                       SyncLock numericLock
                           totalCount += taskCtr
                           totalValue += taskTotal
                       End SyncLock
                   End Sub, token))
        Next

        Try
            Task.WaitAll(tasks.ToArray())
            Console.WriteLine()
            Console.WriteLine("Total random numbers generated: {0:N0}", totalCount)
            Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue)
            Console.WriteLine("Random number mean: {0:N4}", totalValue / totalCount)
        Catch e As AggregateException
            For Each inner As Exception In e.InnerExceptions
                Dim canc As TaskCanceledException = TryCast(inner, TaskCanceledException)
                If canc IsNot Nothing Then
                    Console.WriteLine("Task #{0} cancelled.", canc.Task.Id)
                Else
                    Console.WriteLine("Exception: {0}", inner.GetType().Name)
                End If
            Next
        Finally
            source.Dispose()
        End Try
    End Sub
End Module
' The example displays output like the following:
'       Task 1 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,502.47
'       Random number mean: 0.5003
'       
'       Task 0 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,445.63
'       Random number mean: 0.5002
'       
'       Task 2 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,556.04
'       Random number mean: 0.5003
'       
'       Task 3 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,178.87
'       Random number mean: 0.5001
'       
'       Task 4 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,819.17
'       Random number mean: 0.4999
'       
'       Task 5 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,190.58
'       Random number mean: 0.5001
'       
'       Task 6 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,720.21
'       Random number mean: 0.4999
'       
'       Task 7 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,000.96
'       Random number mean: 0.4995
'       
'       Task 8 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,499.33
'       Random number mean: 0.4997
'       
'       Task 9 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,193.25
'       Random number mean: 0.5001
'       
'       Task 10 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,960.82
'       Random number mean: 0.5000
'       
'       
'       Total random numbers generated: 22,000,000
'       Total sum of all random numbers: 11,000,067.33
'       Random number mean: 0.5000

Ini berbeda dari contoh pertama dengan cara berikut:

  • Variabel untuk melacak jumlah angka acak yang dihasilkan dan jumlahnya di setiap tugas bersifat lokal untuk tugas, sehingga tidak perlu menggunakan ThreadStaticAttribute atribut .
  • Metode statis Task.WaitAll digunakan untuk memastikan bahwa utas utama tidak selesai sebelum semua tugas selesai. Tidak perlu objek.CountdownEvent
  • Pengecualian yang dihasilkan dari pembatalan tugas muncul dalam Task.WaitAll metode . Dalam contoh sebelumnya, ditangani oleh setiap utas.

Menghasilkan berbagai jenis angka acak

Generator angka acak menyediakan metode yang memungkinkan Anda menghasilkan jenis angka acak berikut:

  • Serangkaian Byte nilai. Anda menentukan jumlah nilai byte dengan meneruskan array yang diinisialisasi ke jumlah elemen yang Anda inginkan agar metode kembali ke NextBytes metode . Contoh berikut menghasilkan 20 byte.

    Random rnd = new Random();
    Byte[] bytes = new Byte[20];
    rnd.NextBytes(bytes);
    for (int ctr = 1; ctr <= bytes.Length; ctr++)
    {
        Console.Write("{0,3}   ", bytes[ctr - 1]);
        if (ctr % 10 == 0) Console.WriteLine();
    }
    
    // The example displays output like the following:
    //       141    48   189    66   134   212   211    71   161    56
    //       181   166   220   133     9   252   222    57    62    62
    
    let rnd = Random()
    let bytes = Array.zeroCreate 20
    rnd.NextBytes bytes
    
    for i = 1 to bytes.Length do
        printf "%3i   " bytes.[i - 1]
        if (i % 10 = 0) then printfn ""
    
    // The example displays output like the following:
    //       141    48   189    66   134   212   211    71   161    56
    //       181   166   220   133     9   252   222    57    62    62
    
    Module Example9
        Public Sub Main()
            Dim rnd As New Random()
            Dim bytes(19) As Byte
            rnd.NextBytes(bytes)
            For ctr As Integer = 1 To bytes.Length
                Console.Write("{0,3}   ", bytes(ctr - 1))
                If ctr Mod 10 = 0 Then Console.WriteLine()
            Next
        End Sub
    End Module
    ' The example displays output like the following:
    '       141    48   189    66   134   212   211    71   161    56
    '       181   166   220   133     9   252   222    57    62    62
    
  • Bilangan bulat tunggal. Anda dapat memilih apakah Anda menginginkan bilangan bulat dari 0 hingga nilai maksimum (Int32.MaxValue - 1) dengan memanggil Next() metode , bilangan bulat antara 0 dan nilai tertentu dengan memanggil Next(Int32) metode , atau bilangan bulat dalam rentang nilai dengan memanggil Next(Int32, Int32) metode . Dalam kelebihan beban berparameter, nilai maksimum yang ditentukan bersifat eksklusif; artinya, angka maksimum aktual yang dihasilkan adalah satu kurang dari nilai yang ditentukan.

    Contoh berikut memanggil Next(Int32, Int32) metode untuk menghasilkan 10 angka acak antara -10 dan 10. Perhatikan bahwa argumen kedua ke metode menentukan batas atas eksklusif dari rentang nilai acak yang dikembalikan oleh metode . Dengan kata lain, bilangan bulat terbesar yang dapat dikembalikan metode adalah satu kurang dari nilai ini.

    Random rnd = new Random();
    for (int ctr = 0; ctr < 10; ctr++)
    {
        Console.Write("{0,3}   ", rnd.Next(-10, 11));
    }
    
    // The example displays output like the following:
    //    2     9    -3     2     4    -7    -3    -8    -8     5
    
    let rnd = Random()
    for i = 0 to 9 do 
        printf "%3i   " (rnd.Next(-10, 11))
    
    // The example displays output like the following:
    //    2     9    -3     2     4    -7    -3    -8    -8     5
    
    Module Example11
        Public Sub Main()
            Dim rnd As New Random()
            For ctr As Integer = 0 To 9
                Console.Write("{0,3}   ", rnd.Next(-10, 11))
            Next
        End Sub
    End Module
    ' The example displays output like the following:
    '    2     9    -3     2     4    -7    -3    -8    -8     5
    
  • Satu nilai floating-point dari 0,0 hingga kurang dari 1,0 dengan memanggil NextDouble metode . Batas atas eksklusif dari angka acak yang dikembalikan oleh metode adalah 1, sehingga batas atas aktualnya adalah 0,999999999999999978. Contoh berikut menghasilkan 10 angka floating-point acak.

    Random rnd = new Random();
    for (int ctr = 0; ctr < 10; ctr++)
    {
        Console.Write("{0,-19:R}   ", rnd.NextDouble());
        if ((ctr + 1) % 3 == 0) Console.WriteLine();
    }
    
    // The example displays output like the following:
    //    0.7911680553998649    0.0903414949264105    0.79776258291572455
    //    0.615568345233597     0.652644504165577     0.84023809378977776
    //    0.099662564741290441   0.91341467383942321  0.96018602045261581
    //    0.74772306473354022
    
    let rnd = Random()
    for i = 0 to 9 do 
        printf $"{rnd.NextDouble(),-19:R}   "
        if (i + 1) % 3 = 0 then printfn ""
    
    // The example displays output like the following:
    //    0.7911680553998649    0.0903414949264105    0.79776258291572455
    //    0.615568345233597     0.652644504165577     0.84023809378977776
    //    0.099662564741290441   0.91341467383942321  0.96018602045261581
    //    0.74772306473354022
    
    Module Example10
        Public Sub Main()
            Dim rnd As New Random()
            For ctr As Integer = 0 To 9
                Console.Write("{0,-19:R}   ", rnd.NextDouble())
                If (ctr + 1) Mod 3 = 0 Then Console.WriteLine()
            Next
        End Sub
    End Module
    ' The example displays output like the following:
    '    0.7911680553998649    0.0903414949264105    0.79776258291572455    
    '    0.615568345233597     0.652644504165577     0.84023809378977776   
    '    0.099662564741290441  0.91341467383942321   0.96018602045261581   
    '    0.74772306473354022
    

Penting

Metode ini Next(Int32, Int32) memungkinkan Anda menentukan rentang angka acak yang dikembalikan. Namun, maxValue parameter, yang menentukan angka yang dikembalikan rentang atas, adalah nilai eksklusif, bukan inklusif. Ini berarti bahwa panggilan Next(0, 100) metode mengembalikan nilai antara 0 dan 99, dan bukan antara 0 dan 100.

Anda juga dapat menggunakan Random kelas untuk tugas-tugas seperti menghasilkan nilai Boolean acak, menghasilkan nilai floating-point acak dalam rentang tertentu, menghasilkan Menghasilkan bilangan bulat 64-bit acak, dan mengambil elemen unik dari array atau koleksi.

Ganti algoritma Anda sendiri

Anda dapat menerapkan generator angka acak Anda sendiri dengan mewarisi dari Random kelas dan menyediakan algoritma pembuatan angka acak Anda. Untuk menyediakan algoritma Anda sendiri, Anda harus mengambil Sample alih metode , yang mengimplementasikan algoritma pembuatan angka acak. Anda juga harus mengambil alih Next()metode , Next(Int32, Int32), dan NextBytes untuk memastikan bahwa metode tersebut memanggil metode penimpaan Sample Anda. Anda tidak perlu mengambil alih Next(Int32) metode dan NextDouble .

Misalnya yang berasal dari Random kelas dan memodifikasi generator angka pseudo-random defaultnya, lihat Sample halaman referensi.

Mengambil urutan nilai acak yang sama

Terkadang Anda ingin menghasilkan urutan angka acak yang sama dalam skenario pengujian perangkat lunak dan dalam bermain game. Pengujian dengan urutan angka acak yang sama memungkinkan Anda mendeteksi regresi dan mengonfirmasi perbaikan bug. Menggunakan urutan angka acak yang sama dalam game memungkinkan Anda untuk memutar ulang game sebelumnya.

Anda dapat menghasilkan urutan angka acak yang sama dengan memberikan nilai seed yang sama kepada Random(Int32) konstruktor. Nilai benih memberikan nilai awal untuk algoritma pembuatan angka acak pseudo. Contoh berikut menggunakan 100100 sebagai nilai seed arbitrer untuk membuat Random instans objek, menampilkan 20 nilai floating-point acak, dan mempertahankan nilai seed. Kemudian memulihkan nilai seed, membuat instans generator angka acak baru, dan menampilkan 20 nilai floating-point acak yang sama. Perhatikan bahwa contoh dapat menghasilkan urutan angka acak yang berbeda jika dijalankan pada versi .NET yang berbeda.

using System;
using System.IO;

public class Example12
{
    public static void Main()
    {
        int seed = 100100;
        ShowRandomNumbers(seed);
        Console.WriteLine();

        PersistSeed(seed);

        DisplayNewRandomNumbers();
    }

    private static void ShowRandomNumbers(int seed)
    {
        Random rnd = new Random(seed);
        for (int ctr = 0; ctr <= 20; ctr++)
            Console.WriteLine(rnd.NextDouble());
    }

    private static void PersistSeed(int seed)
    {
        FileStream fs = new FileStream(@".\seed.dat", FileMode.Create);
        BinaryWriter bin = new BinaryWriter(fs);
        bin.Write(seed);
        bin.Close();
    }

    private static void DisplayNewRandomNumbers()
    {
        FileStream fs = new FileStream(@".\seed.dat", FileMode.Open);
        BinaryReader bin = new BinaryReader(fs);
        int seed = bin.ReadInt32();
        bin.Close();

        Random rnd = new Random(seed);
        for (int ctr = 0; ctr <= 20; ctr++)
            Console.WriteLine(rnd.NextDouble());
    }
}
// The example displays output like the following:
//       0.500193602172748
//       0.0209461245783354
//       0.465869495396442
//       0.195512794514891
//       0.928583675496552
//       0.729333720509584
//       0.381455668891527
//       0.0508996467343064
//       0.019261200921266
//       0.258578445417145
//       0.0177532266908107
//       0.983277184415272
//       0.483650274334313
//       0.0219647376900375
//       0.165910115077118
//       0.572085966622497
//       0.805291457942357
//       0.927985211335116
//       0.4228545699375
//       0.523320379910674
//       0.157783938645285
//
//       0.500193602172748
//       0.0209461245783354
//       0.465869495396442
//       0.195512794514891
//       0.928583675496552
//       0.729333720509584
//       0.381455668891527
//       0.0508996467343064
//       0.019261200921266
//       0.258578445417145
//       0.0177532266908107
//       0.983277184415272
//       0.483650274334313
//       0.0219647376900375
//       0.165910115077118
//       0.572085966622497
//       0.805291457942357
//       0.927985211335116
//       0.4228545699375
//       0.523320379910674
//       0.157783938645285
open System
open System.IO

let showRandomNumbers seed =
    let rnd = Random seed
    for _ = 0 to 20 do 
        printfn $"{rnd.NextDouble()}"

let persistSeed (seed: int) =
    use bin = new BinaryWriter(new FileStream(@".\seed.dat", FileMode.Create))
    bin.Write seed

let displayNewRandomNumbers () =
    use bin = new BinaryReader(new FileStream(@".\seed.dat", FileMode.Open))
    let seed = bin.ReadInt32()

    let rnd = Random seed
    for _ = 0 to 20 do 
        printfn $"{rnd.NextDouble()}"

let seed = 100100
showRandomNumbers seed
printfn ""

persistSeed seed

displayNewRandomNumbers ()

// The example displays output like the following:
//       0.500193602172748
//       0.0209461245783354
//       0.465869495396442
//       0.195512794514891
//       0.928583675496552
//       0.729333720509584
//       0.381455668891527
//       0.0508996467343064
//       0.019261200921266
//       0.258578445417145
//       0.0177532266908107
//       0.983277184415272
//       0.483650274334313
//       0.0219647376900375
//       0.165910115077118
//       0.572085966622497
//       0.805291457942357
//       0.927985211335116
//       0.4228545699375
//       0.523320379910674
//       0.157783938645285
//
//       0.500193602172748
//       0.0209461245783354
//       0.465869495396442
//       0.195512794514891
//       0.928583675496552
//       0.729333720509584
//       0.381455668891527
//       0.0508996467343064
//       0.019261200921266
//       0.258578445417145
//       0.0177532266908107
//       0.983277184415272
//       0.483650274334313
//       0.0219647376900375
//       0.165910115077118
//       0.572085966622497
//       0.805291457942357
//       0.927985211335116
//       0.4228545699375
//       0.523320379910674
//       0.157783938645285
Imports System.IO

Module Example14
    Public Sub Main()
        Dim seed As Integer = 100100
        ShowRandomNumbers(seed)
        Console.WriteLine()

        PersistSeed(seed)

        DisplayNewRandomNumbers()
    End Sub

    Private Sub ShowRandomNumbers(seed As Integer)
        Dim rnd As New Random(seed)
        For ctr As Integer = 0 To 20
            Console.WriteLine(rnd.NextDouble())
        Next
    End Sub

    Private Sub PersistSeed(seed As Integer)
        Dim fs As New FileStream(".\seed.dat", FileMode.Create)
        Dim bin As New BinaryWriter(fs)
        bin.Write(seed)
        bin.Close()
    End Sub

    Private Sub DisplayNewRandomNumbers()
        Dim fs As New FileStream(".\seed.dat", FileMode.Open)
        Dim bin As New BinaryReader(fs)
        Dim seed As Integer = bin.ReadInt32()
        bin.Close()

        Dim rnd As New Random(seed)
        For ctr As Integer = 0 To 20
            Console.WriteLine(rnd.NextDouble())
        Next
    End Sub
End Module
' The example displays output like the following:
'       0.500193602172748
'       0.0209461245783354
'       0.465869495396442
'       0.195512794514891
'       0.928583675496552
'       0.729333720509584
'       0.381455668891527
'       0.0508996467343064
'       0.019261200921266
'       0.258578445417145
'       0.0177532266908107
'       0.983277184415272
'       0.483650274334313
'       0.0219647376900375
'       0.165910115077118
'       0.572085966622497
'       0.805291457942357
'       0.927985211335116
'       0.4228545699375
'       0.523320379910674
'       0.157783938645285
'       
'       0.500193602172748
'       0.0209461245783354
'       0.465869495396442
'       0.195512794514891
'       0.928583675496552
'       0.729333720509584
'       0.381455668891527
'       0.0508996467343064
'       0.019261200921266
'       0.258578445417145
'       0.0177532266908107
'       0.983277184415272
'       0.483650274334313
'       0.0219647376900375
'       0.165910115077118
'       0.572085966622497
'       0.805291457942357
'       0.927985211335116
'       0.4228545699375
'       0.523320379910674
'       0.157783938645285

Mengambil urutan unik angka acak

Menyediakan nilai benih yang berbeda untuk instans Random kelas menyebabkan setiap generator angka acak menghasilkan urutan nilai yang berbeda. Anda dapat memberikan nilai seed baik secara eksplisit dengan memanggil Random(Int32) konstruktor, atau secara implisit dengan memanggil Random() konstruktor. Sebagian besar pengembang memanggil konstruktor tanpa parameter, yang menggunakan jam sistem. Contoh berikut menggunakan pendekatan ini untuk membuat instans dua Random instans. Setiap instans menampilkan serangkaian 10 bilangan bulat acak.

using System;
using System.Threading;

public class Example16
{
    public static void Main()
    {
        Console.WriteLine("Instantiating two random number generators...");
        Random rnd1 = new Random();
        Thread.Sleep(2000);
        Random rnd2 = new Random();

        Console.WriteLine("\nThe first random number generator:");
        for (int ctr = 1; ctr <= 10; ctr++)
            Console.WriteLine("   {0}", rnd1.Next());

        Console.WriteLine("\nThe second random number generator:");
        for (int ctr = 1; ctr <= 10; ctr++)
            Console.WriteLine("   {0}", rnd2.Next());
    }
}
// The example displays output like the following:
//       Instantiating two random number generators...
//
//       The first random number generator:
//          643164361
//          1606571630
//          1725607587
//          2138048432
//          496874898
//          1969147632
//          2034533749
//          1840964542
//          412380298
//          47518930
//
//       The second random number generator:
//          1251659083
//          1514185439
//          1465798544
//          517841554
//          1821920222
//          195154223
//          1538948391
//          1548375095
//          546062716
//          897797880
open System
open System.Threading

printfn "Instantiating two random number generators..."
let rnd1 = Random()
Thread.Sleep 2000
let rnd2 = Random()

printfn "\nThe first random number generator:"
for _ = 1 to 10 do 
    printfn $"   {rnd1.Next()}"

printfn "\nThe second random number generator:"
for _ = 1 to 10 do 
    printfn $"   {rnd2.Next()}"

// The example displays output like the following:
//       Instantiating two random number generators...
//
//       The first random number generator:
//          643164361
//          1606571630
//          1725607587
//          2138048432
//          496874898
//          1969147632
//          2034533749
//          1840964542
//          412380298
//          47518930
//
//       The second random number generator:
//          1251659083
//          1514185439
//          1465798544
//          517841554
//          1821920222
//          195154223
//          1538948391
//          1548375095
//          546062716
//          897797880
Imports System.Threading

Module Example17
    Public Sub Main()
        Console.WriteLine("Instantiating two random number generators...")
        Dim rnd1 As New Random()
        Thread.Sleep(2000)
        Dim rnd2 As New Random()
        Console.WriteLine()

        Console.WriteLine("The first random number generator:")
        For ctr As Integer = 1 To 10
            Console.WriteLine("   {0}", rnd1.Next())
        Next
        Console.WriteLine()

        Console.WriteLine("The second random number generator:")
        For ctr As Integer = 1 To 10
            Console.WriteLine("   {0}", rnd2.Next())
        Next
    End Sub
End Module
' The example displays output like the following:
'       Instantiating two random number generators...
'       
'       The first random number generator:
'          643164361
'          1606571630
'          1725607587
'          2138048432
'          496874898
'          1969147632
'          2034533749
'          1840964542
'          412380298
'          47518930
'       
'       The second random number generator:
'          1251659083
'          1514185439
'          1465798544
'          517841554
'          1821920222
'          195154223
'          1538948391
'          1548375095
'          546062716
'          897797880

Namun, karena resolusinya yang terbatas, jam sistem tidak mendeteksi perbedaan waktu yang kurang dari sekitar 15 milidetik. Oleh karena itu, jika kode Anda memanggil Random() kelebihan beban pada .NET Framework untuk membuat instans dua Random objek secara berurutan, Anda mungkin secara tidak sengaja menyediakan objek dengan nilai benih yang identik. (Kelas Random di .NET Core tidak memiliki batasan ini.) Untuk melihat ini dalam contoh sebelumnya, komentari Thread.Sleep panggilan metode, dan kompilasi dan jalankan contoh lagi.

Untuk mencegah hal ini terjadi, kami sarankan Anda membuat instans satu Random objek daripada beberapa objek. Namun, Random karena tidak aman utas, Anda harus menggunakan beberapa perangkat sinkronisasi jika Anda mengakses Random instans dari beberapa utas; untuk informasi selengkapnya, lihat bagian Keamanan utas. Secara bergantian, Anda dapat menggunakan mekanisme penundaan, seperti metode yang Sleep digunakan dalam contoh sebelumnya, untuk memastikan bahwa instansiasi terjadi lebih dari 15 milidetik terpisah.

Mengambil bilangan bulat dalam rentang tertentu

Anda dapat mengambil bilangan bulat dalam rentang tertentu dengan memanggil Next(Int32, Int32) metode , yang memungkinkan Anda menentukan batas bawah dan atas angka yang Anda inginkan untuk dikembalikan oleh generator angka acak. Batas atas adalah nilai eksklusif, bukan inklusif. Artinya, tidak disertakan dalam rentang nilai yang dikembalikan oleh metode . Contoh berikut menggunakan metode ini untuk menghasilkan bilangan bulat acak antara -10 dan 10. Perhatikan bahwa itu menentukan 11, yang merupakan satu lebih besar dari nilai yang diinginkan, sebagai nilai maxValue argumen dalam panggilan metode.

Random rnd = new Random();
for (int ctr = 1; ctr <= 15; ctr++)
{
    Console.Write("{0,3}    ", rnd.Next(-10, 11));
    if (ctr % 5 == 0) Console.WriteLine();
}

// The example displays output like the following:
//        -2     -5     -1     -2     10
//        -3      6     -4     -8      3
//        -7     10      5     -2      4
let rnd = Random()
for i = 1 to 15 do 
    printf "%3i    " (rnd.Next(-10, 11))
    if i % 5 = 0 then printfn ""
// The example displays output like the following:
//        -2     -5     -1     -2     10
//        -3      6     -4     -8      3
//        -7     10      5     -2      4
Module Example12
    Public Sub Main()
        Dim rnd As New Random()
        For ctr As Integer = 1 To 15
            Console.Write("{0,3}    ", rnd.Next(-10, 11))
            If ctr Mod 5 = 0 Then Console.WriteLine()
        Next
    End Sub
End Module
' The example displays output like the following:
'        -2     -5     -1     -2     10
'        -3      6     -4     -8      3
'        -7     10      5     -2      4

Mengambil bilangan bulat dengan jumlah digit tertentu

Anda dapat memanggil Next(Int32, Int32) metode untuk mengambil nomor dengan jumlah digit tertentu. Misalnya, untuk mengambil angka dengan empat digit (yaitu, angka yang berkisar dari 1000 hingga 9999), Anda memanggil Next(Int32, Int32) metode dengan minValue nilai 1000 dan maxValue nilai 10000, seperti yang ditunjukkan contoh berikut.

Random rnd = new Random();
for (int ctr = 1; ctr <= 50; ctr++)
{
    Console.Write("{0,3}    ", rnd.Next(1000, 10000));
    if (ctr % 10 == 0) Console.WriteLine();
}

// The example displays output like the following:
//    9570    8979    5770    1606    3818    4735    8495    7196    7070    2313
//    5279    6577    5104    5734    4227    3373    7376    6007    8193    5540
//    7558    3934    3819    7392    1113    7191    6947    4963    9179    7907
//    3391    6667    7269    1838    7317    1981    5154    7377    3297    5320
//    9869    8694    2684    4949    2999    3019    2357    5211    9604    2593
let rnd = Random()
for i = 1 to 50 do
    printf "%3i    " (rnd.Next(1000, 10000))
    if i % 10 = 0 then printfn ""

// The example displays output like the following:
//    9570    8979    5770    1606    3818    4735    8495    7196    7070    2313
//    5279    6577    5104    5734    4227    3373    7376    6007    8193    5540
//    7558    3934    3819    7392    1113    7191    6947    4963    9179    7907
//    3391    6667    7269    1838    7317    1981    5154    7377    3297    5320
//    9869    8694    2684    4949    2999    3019    2357    5211    9604    2593
Module Example13
    Public Sub Main()
        Dim rnd As New Random()
        For ctr As Integer = 1 To 50
            Console.Write("{0,3}    ", rnd.Next(1000, 10000))
            If ctr Mod 10 = 0 Then Console.WriteLine()
        Next
    End Sub
End Module
' The example displays output like the following:
'    9570    8979    5770    1606    3818    4735    8495    7196    7070    2313
'    5279    6577    5104    5734    4227    3373    7376    6007    8193    5540
'    7558    3934    3819    7392    1113    7191    6947    4963    9179    7907
'    3391    6667    7269    1838    7317    1981    5154    7377    3297    5320
'    9869    8694    2684    4949    2999    3019    2357    5211    9604    2593

Mengambil nilai floating-point dalam rentang tertentu

Metode ini NextDouble mengembalikan nilai floating-point acak yang berkisar antara 0 hingga kurang dari 1. Namun, Anda sering ingin menghasilkan nilai acak di beberapa rentang lain.

Jika interval antara nilai minimum dan maksimum yang diinginkan adalah 1, Anda dapat menambahkan perbedaan antara interval awal yang diinginkan dan 0 ke angka yang dikembalikan oleh NextDouble metode . Contoh berikut melakukan ini untuk menghasilkan 10 angka acak antara -1 dan 0.

Random rnd = new Random();
for (int ctr = 1; ctr <= 10; ctr++)
    Console.WriteLine(rnd.NextDouble() - 1);

// The example displays output like the following:
//       -0.930412760437658
//       -0.164699016215605
//       -0.9851692803135
//       -0.43468508843085
//       -0.177202483255976
//       -0.776813320245972
//       -0.0713201854710096
//       -0.0912875561468711
//       -0.540621722368813
//       -0.232211863730201
let rnd = Random()

for _ = 1 to 10 do
    printfn "%O" (rnd.NextDouble() - 1.0)

// The example displays output like the following:
//       -0.930412760437658
//       -0.164699016215605
//       -0.9851692803135
//       -0.43468508843085
//       -0.177202483255976
//       -0.776813320245972
//       -0.0713201854710096
//       -0.0912875561468711
//       -0.540621722368813
//       -0.232211863730201
Module Example6
    Public Sub Main()
        Dim rnd As New Random()
        For ctr As Integer = 1 To 10
            Console.WriteLine(rnd.NextDouble() - 1)
        Next
    End Sub
End Module
' The example displays output like the following:
'       -0.930412760437658
'       -0.164699016215605
'       -0.9851692803135
'       -0.43468508843085
'       -0.177202483255976
'       -0.776813320245972
'       -0.0713201854710096
'       -0.0912875561468711
'       -0.540621722368813
'       -0.232211863730201

Untuk menghasilkan angka floating-point acak yang batas bawahnya adalah 0 tetapi batas atas lebih besar dari 1 (atau, dalam kasus angka negatif, yang batas bawahnya kurang dari -1 dan batas atas adalah 0), kalikan angka acak dengan batas bukan nol. Contoh berikut melakukan ini untuk menghasilkan 20 juta angka floating-point acak yang berkisar dari 0 hingga Int64.MaxValue. Di juga menampilkan distribusi nilai acak yang dihasilkan oleh metode .

const long ONE_TENTH = 922337203685477581;

Random rnd = new Random();
double number;
int[] count = new int[10];

// Generate 20 million integer values between.
for (int ctr = 1; ctr <= 20000000; ctr++)
{
    number = rnd.NextDouble() * Int64.MaxValue;
    // Categorize random numbers into 10 groups.
    count[(int)(number / ONE_TENTH)]++;
}
// Display breakdown by range.
Console.WriteLine("{0,28} {1,32}   {2,7}\n", "Range", "Count", "Pct.");
for (int ctr = 0; ctr <= 9; ctr++)
    Console.WriteLine("{0,25:N0}-{1,25:N0}  {2,8:N0}   {3,7:P2}", ctr * ONE_TENTH,
                       ctr < 9 ? ctr * ONE_TENTH + ONE_TENTH - 1 : Int64.MaxValue,
                       count[ctr], count[ctr] / 20000000.0);

// The example displays output like the following:
//                           Range                            Count      Pct.
//
//                            0-  922,337,203,685,477,580  1,996,148    9.98 %
//      922,337,203,685,477,581-1,844,674,407,370,955,161  2,000,293   10.00 %
//    1,844,674,407,370,955,162-2,767,011,611,056,432,742  2,000,094   10.00 %
//    2,767,011,611,056,432,743-3,689,348,814,741,910,323  2,000,159   10.00 %
//    3,689,348,814,741,910,324-4,611,686,018,427,387,904  1,999,552   10.00 %
//    4,611,686,018,427,387,905-5,534,023,222,112,865,485  1,998,248    9.99 %
//    5,534,023,222,112,865,486-6,456,360,425,798,343,066  2,000,696   10.00 %
//    6,456,360,425,798,343,067-7,378,697,629,483,820,647  2,001,637   10.01 %
//    7,378,697,629,483,820,648-8,301,034,833,169,298,228  2,002,870   10.01 %
//    8,301,034,833,169,298,229-9,223,372,036,854,775,807  2,000,303   10.00 %
[<Literal>]
let ONE_TENTH = 922337203685477581L

let rnd = Random()

// Generate 20 million random integers.
let count =
    Array.init 20000000 (fun _ -> rnd.NextDouble() * (float Int64.MaxValue) )
    |> Array.countBy (fun x -> x / (float ONE_TENTH) |> int ) // Categorize into 10 groups and count them.
    |> Array.map snd

// Display breakdown by range.
printfn "%28s %32s   %7s\n" "Range" "Count" "Pct."
for i = 0 to 9 do
    let r1 = int64 i * ONE_TENTH
    let r2 = if i < 9 then r1 + ONE_TENTH - 1L else Int64.MaxValue
    printfn $"{r1,25:N0}-{r2,25:N0}  {count.[i],8:N0}   {float count.[i] / 20000000.0,7:P2}"

// The example displays output like the following:
//                           Range                            Count      Pct.
//
//                            0-  922,337,203,685,477,580  1,996,148    9.98 %
//      922,337,203,685,477,581-1,844,674,407,370,955,161  2,000,293   10.00 %
//    1,844,674,407,370,955,162-2,767,011,611,056,432,742  2,000,094   10.00 %
//    2,767,011,611,056,432,743-3,689,348,814,741,910,323  2,000,159   10.00 %
//    3,689,348,814,741,910,324-4,611,686,018,427,387,904  1,999,552   10.00 %
//    4,611,686,018,427,387,905-5,534,023,222,112,865,485  1,998,248    9.99 %
//    5,534,023,222,112,865,486-6,456,360,425,798,343,066  2,000,696   10.00 %
//    6,456,360,425,798,343,067-7,378,697,629,483,820,647  2,001,637   10.01 %
//    7,378,697,629,483,820,648-8,301,034,833,169,298,228  2,002,870   10.01 %
//    8,301,034,833,169,298,229-9,223,372,036,854,775,807  2,000,303   10.00 %
Module Example5
    Public Sub Main()
        Const ONE_TENTH As Long = 922337203685477581

        Dim rnd As New Random()
        Dim number As Long
        Dim count(9) As Integer

        ' Generate 20 million integer values.
        For ctr As Integer = 1 To 20000000
            number = CLng(rnd.NextDouble() * Int64.MaxValue)
            ' Categorize random numbers.
            count(CInt(number \ ONE_TENTH)) += 1
        Next
        ' Display breakdown by range.
        Console.WriteLine("{0,28} {1,32}   {2,7}", "Range", "Count", "Pct.")
        Console.WriteLine()
        For ctr As Integer = 0 To 9
            Console.WriteLine("{0,25:N0}-{1,25:N0}  {2,8:N0}   {3,7:P2}", ctr * ONE_TENTH,
                            If(ctr < 9, ctr * ONE_TENTH + ONE_TENTH - 1, Int64.MaxValue),
                            count(ctr), count(ctr) / 20000000)
        Next
    End Sub
End Module
' The example displays output like the following:
'                           Range                            Count      Pct.
'    
'                            0-  922,337,203,685,477,580  1,996,148    9.98 %
'      922,337,203,685,477,581-1,844,674,407,370,955,161  2,000,293   10.00 %
'    1,844,674,407,370,955,162-2,767,011,611,056,432,742  2,000,094   10.00 %
'    2,767,011,611,056,432,743-3,689,348,814,741,910,323  2,000,159   10.00 %
'    3,689,348,814,741,910,324-4,611,686,018,427,387,904  1,999,552   10.00 %
'    4,611,686,018,427,387,905-5,534,023,222,112,865,485  1,998,248    9.99 %
'    5,534,023,222,112,865,486-6,456,360,425,798,343,066  2,000,696   10.00 %
'    6,456,360,425,798,343,067-7,378,697,629,483,820,647  2,001,637   10.01 %
'    7,378,697,629,483,820,648-8,301,034,833,169,298,228  2,002,870   10.01 %
'    8,301,034,833,169,298,229-9,223,372,036,854,775,807  2,000,303   10.00 %

Untuk menghasilkan angka floating-point acak antara dua nilai arbitrer, seperti Next(Int32, Int32) yang dilakukan metode untuk bilangan bulat, gunakan rumus berikut:

Random.NextDouble() * (maxValue - minValue) + minValue

Contoh berikut menghasilkan 1 juta angka acak yang berkisar antara 10,0 hingga 11,0, dan menampilkan distribusinya.

Random rnd = new Random();
int lowerBound = 10;
int upperBound = 11;
int[] range = new int[10];
for (int ctr = 1; ctr <= 1000000; ctr++)
{
    Double value = rnd.NextDouble() * (upperBound - lowerBound) + lowerBound;
    range[(int)Math.Truncate((value - lowerBound) * 10)]++;
}

for (int ctr = 0; ctr <= 9; ctr++)
{
    Double lowerRange = 10 + ctr * .1;
    Console.WriteLine("{0:N1} to {1:N1}: {2,8:N0}  ({3,7:P2})",
                      lowerRange, lowerRange + .1, range[ctr],
                      range[ctr] / 1000000.0);
}

// The example displays output like the following:
//       10.0 to 10.1:   99,929  ( 9.99 %)
//       10.1 to 10.2:  100,189  (10.02 %)
//       10.2 to 10.3:   99,384  ( 9.94 %)
//       10.3 to 10.4:  100,240  (10.02 %)
//       10.4 to 10.5:   99,397  ( 9.94 %)
//       10.5 to 10.6:  100,580  (10.06 %)
//       10.6 to 10.7:  100,293  (10.03 %)
//       10.7 to 10.8:  100,135  (10.01 %)
//       10.8 to 10.9:   99,905  ( 9.99 %)
//       10.9 to 11.0:   99,948  ( 9.99 %)
let rnd = Random()

let lowerBound = 10.0
let upperBound = 11.0

let range =
    Array.init 1000000 (fun _ -> rnd.NextDouble() * (upperBound - lowerBound) +  lowerBound)
    |> Array.countBy (fun x -> Math.Truncate((x - lowerBound) * 10.0) |> int)
    |> Array.map snd

for i = 0 to 9 do 
    let lowerRange = 10.0 + float i * 0.1
    printfn $"{lowerRange:N1} to {lowerRange + 0.1:N1}: {range.[i],8:N0}  ({float range.[i] / 1000000.0,6:P2})"

// The example displays output like the following:
//       10.0 to 10.1:   99,929  ( 9.99 %)
//       10.1 to 10.2:  100,189  (10.02 %)
//       10.2 to 10.3:   99,384  ( 9.94 %)
//       10.3 to 10.4:  100,240  (10.02 %)
//       10.4 to 10.5:   99,397  ( 9.94 %)
//       10.5 to 10.6:  100,580  (10.06 %)
//       10.6 to 10.7:  100,293  (10.03 %)
//       10.7 to 10.8:  100,135  (10.01 %)
//       10.8 to 10.9:   99,905  ( 9.99 %)
//       10.9 to 11.0:   99,948  ( 9.99 %)
Module Example7
    Public Sub Main()
        Dim rnd As New Random()
        Dim lowerBound As Integer = 10
        Dim upperBound As Integer = 11
        Dim range(9) As Integer
        For ctr As Integer = 1 To 1000000
            Dim value As Double = rnd.NextDouble() * (upperBound - lowerBound) + lowerBound
            range(CInt(Math.Truncate((value - lowerBound) * 10))) += 1
        Next

        For ctr As Integer = 0 To 9
            Dim lowerRange As Double = 10 + ctr * 0.1
            Console.WriteLine("{0:N1} to {1:N1}: {2,8:N0}  ({3,7:P2})",
                           lowerRange, lowerRange + 0.1, range(ctr),
                           range(ctr) / 1000000.0)
        Next
    End Sub
End Module
' The example displays output like the following:
'       10.0 to 10.1:   99,929  ( 9.99 %)
'       10.1 to 10.2:  100,189  (10.02 %)
'       10.2 to 10.3:   99,384  ( 9.94 %)
'       10.3 to 10.4:  100,240  (10.02 %)
'       10.4 to 10.5:   99,397  ( 9.94 %)
'       10.5 to 10.6:  100,580  (10.06 %)
'       10.6 to 10.7:  100,293  (10.03 %)
'       10.7 to 10.8:  100,135  (10.01 %)
'       10.8 to 10.9:   99,905  ( 9.99 %)
'       10.9 to 11.0:   99,948  ( 9.99 %)

Hasilkan nilai Boolean acak

Kelas Random tidak menyediakan metode yang menghasilkan Boolean nilai. Namun, Anda dapat menentukan kelas atau metode Anda sendiri untuk melakukannya. Contoh berikut mendefinisikan kelas, BooleanGenerator, dengan satu metode, NextBoolean. Kelas BooleanGenerator menyimpan Random objek sebagai variabel privat. Metode ini NextBoolean memanggil Random.Next(Int32, Int32) metode dan meneruskan hasilnya ke Convert.ToBoolean(Int32) metode . Perhatikan bahwa 2 digunakan sebagai argumen untuk menentukan batas atas angka acak. Karena ini adalah nilai eksklusif, panggilan metode mengembalikan 0 atau 1.

using System;

public class Example1
{
    public static void Main()
    {
        // Instantiate the Boolean generator.
        BooleanGenerator boolGen = new BooleanGenerator();
        int totalTrue = 0, totalFalse = 0;

        // Generate 1,0000 random Booleans, and keep a running total.
        for (int ctr = 0; ctr < 1000000; ctr++)
        {
            bool value = boolGen.NextBoolean();
            if (value)
                totalTrue++;
            else
                totalFalse++;
        }
        Console.WriteLine("Number of true values:  {0,7:N0} ({1:P3})",
                          totalTrue,
                          ((double)totalTrue) / (totalTrue + totalFalse));
        Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
                          totalFalse,
                          ((double)totalFalse) / (totalTrue + totalFalse));
    }
}

public class BooleanGenerator
{
    Random rnd;

    public BooleanGenerator()
    {
        rnd = new Random();
    }

    public bool NextBoolean()
    {
        return rnd.Next(0, 2) == 1;
    }
}
// The example displays output like the following:
//       Number of true values:  500,004 (50.000 %)
//       Number of false values: 499,996 (50.000 %)
open System

type BooleanGenerator() =
    let rnd = Random()

    member _.NextBoolean() =
        rnd.Next(0, 2) = 1

let boolGen = BooleanGenerator()
let mutable totalTrue, totalFalse = 0, 0

for _ = 1 to 1000000 do
    let value = boolGen.NextBoolean()
    if value then 
        totalTrue <- totalTrue + 1
    else 
        totalFalse <- totalFalse + 1

printfn $"Number of true values:  {totalTrue,7:N0} ({(double totalTrue) / double (totalTrue + totalFalse):P3})"
printfn $"Number of false values: {totalFalse,7:N0} ({(double totalFalse) / double (totalTrue + totalFalse):P3})"

// The example displays output like the following:
//       Number of true values:  500,004 (50.000 %)
//       Number of false values: 499,996 (50.000 %)
Module Example2
    Public Sub Main()
        ' Instantiate the Boolean generator.
        Dim boolGen As New BooleanGenerator()
        Dim totalTrue, totalFalse As Integer

        ' Generate 1,0000 random Booleans, and keep a running total.
        For ctr As Integer = 0 To 9999999
            Dim value As Boolean = boolGen.NextBoolean()
            If value Then
                totalTrue += 1
            Else
                totalFalse += 1
            End If
        Next
        Console.WriteLine("Number of true values:  {0,7:N0} ({1:P3})",
                        totalTrue,
                        totalTrue / (totalTrue + totalFalse))
        Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
                        totalFalse,
                        totalFalse / (totalTrue + totalFalse))
    End Sub
End Module

Public Class BooleanGenerator
   Dim rnd As Random
   
   Public Sub New()
      rnd = New Random()
   End Sub

   Public Function NextBoolean() As Boolean
      Return Convert.ToBoolean(rnd.Next(0, 2))
   End Function
End Class
' The example displays the following output:
'       Number of true values:  500,004 (50.000 %)
'       Number of false values: 499,996 (50.000 %)

Alih-alih membuat kelas terpisah untuk menghasilkan nilai acak Boolean , contohnya hanya dapat menentukan satu metode. Namun, dalam hal ini, Random objek harus didefinisikan sebagai variabel tingkat kelas untuk menghindari instans baru Random dalam setiap panggilan metode. Di Visual Basic, instans Acak dapat didefinisikan sebagai variabel Statis dalam NextBoolean metode . Contoh berikut menyediakan implementasi.

Random rnd = new Random();

int totalTrue = 0, totalFalse = 0;

// Generate 1,000,000 random Booleans, and keep a running total.
for (int ctr = 0; ctr < 1000000; ctr++)
{
    bool value = NextBoolean();
    if (value)
        totalTrue++;
    else
        totalFalse++;
}
Console.WriteLine("Number of true values:  {0,7:N0} ({1:P3})",
                  totalTrue,
                  ((double)totalTrue) / (totalTrue + totalFalse));
Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
                  totalFalse,
                  ((double)totalFalse) / (totalTrue + totalFalse));

bool NextBoolean()
{
    return rnd.Next(0, 2) == 1;
}

// The example displays output like the following:
//       Number of true values:  499,777 (49.978 %)
//       Number of false values: 500,223 (50.022 %)
let rnd = Random()

let nextBool () =
    rnd.Next(0, 2) = 1

let mutable totalTrue, totalFalse = 0, 0

for _ = 1 to 1000000 do
    let value = nextBool ()
    if value then 
        totalTrue <- totalTrue + 1
    else 
        totalFalse <- totalFalse + 1

printfn $"Number of true values:  {totalTrue,7:N0} ({(double totalTrue) / double (totalTrue + totalFalse):P3})"
printfn $"Number of false values: {totalFalse,7:N0} ({(double totalFalse) / double (totalTrue + totalFalse):P3})"

// The example displays output like the following:
//       Number of true values:  499,777 (49.978 %)
//       Number of false values: 500,223 (50.022 %)
Module Example3
    Public Sub Main()
        Dim totalTrue, totalFalse As Integer

        ' Generate 1,0000 random Booleans, and keep a running total.
        For ctr As Integer = 0 To 9999999
            Dim value As Boolean = NextBoolean()
            If value Then
                totalTrue += 1
            Else
                totalFalse += 1
            End If
        Next
        Console.WriteLine("Number of true values:  {0,7:N0} ({1:P3})",
                        totalTrue,
                        totalTrue / (totalTrue + totalFalse))
        Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
                        totalFalse,
                        totalFalse / (totalTrue + totalFalse))
    End Sub

    Public Function NextBoolean() As Boolean
        Static rnd As New Random()
        Return Convert.ToBoolean(rnd.Next(0, 2))
    End Function
End Module
' The example displays the following output:
'       Number of true values:  499,777 (49.978 %)
'       Number of false values: 500,223 (50.022 %)

Menghasilkan bilangan bulat 64-bit acak

Kelebihan beban Next metode mengembalikan bilangan bulat 32-bit. Namun, dalam beberapa kasus, Anda mungkin ingin bekerja dengan bilangan bulat 64-bit. Anda dapat melakukan ini sebagai berikut:

  1. NextDouble Panggil metode untuk mengambil nilai titik mengambang presisi ganda.

  2. Kalikan nilai tersebut dengan Int64.MaxValue.

Contoh berikut menggunakan teknik ini untuk menghasilkan 20 juta bilangan bulat panjang acak dan mengategorikannya dalam 10 grup yang sama. Kemudian mengevaluasi distribusi angka acak dengan menghitung angka di setiap grup dari 0 ke Int64.MaxValue. Seperti yang ditunjukkan oleh output dari contoh, angka didistribusikan lebih atau kurang sama melalui rentang bilangan bulat panjang.

const long ONE_TENTH = 922337203685477581;

Random rnd = new Random();
long number;
int[] count = new int[10];

// Generate 20 million long integers.
for (int ctr = 1; ctr <= 20000000; ctr++)
{
    number = (long)(rnd.NextDouble() * Int64.MaxValue);
    // Categorize random numbers.
    count[(int)(number / ONE_TENTH)]++;
}
// Display breakdown by range.
Console.WriteLine("{0,28} {1,32}   {2,7}\n", "Range", "Count", "Pct.");
for (int ctr = 0; ctr <= 9; ctr++)
    Console.WriteLine("{0,25:N0}-{1,25:N0}  {2,8:N0}   {3,7:P2}", ctr * ONE_TENTH,
                       ctr < 9 ? ctr * ONE_TENTH + ONE_TENTH - 1 : Int64.MaxValue,
                       count[ctr], count[ctr] / 20000000.0);

// The example displays output like the following:
//                           Range                            Count      Pct.
//
//                            0-  922,337,203,685,477,580  1,996,148    9.98 %
//      922,337,203,685,477,581-1,844,674,407,370,955,161  2,000,293   10.00 %
//    1,844,674,407,370,955,162-2,767,011,611,056,432,742  2,000,094   10.00 %
//    2,767,011,611,056,432,743-3,689,348,814,741,910,323  2,000,159   10.00 %
//    3,689,348,814,741,910,324-4,611,686,018,427,387,904  1,999,552   10.00 %
//    4,611,686,018,427,387,905-5,534,023,222,112,865,485  1,998,248    9.99 %
//    5,534,023,222,112,865,486-6,456,360,425,798,343,066  2,000,696   10.00 %
//    6,456,360,425,798,343,067-7,378,697,629,483,820,647  2,001,637   10.01 %
//    7,378,697,629,483,820,648-8,301,034,833,169,298,228  2,002,870   10.01 %
//    8,301,034,833,169,298,229-9,223,372,036,854,775,807  2,000,303   10.00 %
[<Literal>]
let ONE_TENTH = 922337203685477581L

let rnd = Random()

let count =
    // Generate 20 million random long integers.
    Array.init 20000000 (fun _ -> rnd.NextDouble() * (float Int64.MaxValue) |> int64 )
    |> Array.countBy (fun x -> x / ONE_TENTH) // Categorize and count random numbers.
    |> Array.map snd

// Display breakdown by range.
printfn "%28s %32s   %7s\n" "Range" "Count" "Pct."
for i = 0 to 9 do
    let r1 = int64 i * ONE_TENTH
    let r2 = if i < 9 then r1 + ONE_TENTH - 1L else Int64.MaxValue
    printfn $"{r1,25:N0}-{r2,25:N0}  {count.[i],8:N0}   {float count.[i] / 20000000.0,7:P2}"

// The example displays output like the following:
//                           Range                            Count      Pct.
//
//                            0-  922,337,203,685,477,580  1,996,148    9.98 %
//      922,337,203,685,477,581-1,844,674,407,370,955,161  2,000,293   10.00 %
//    1,844,674,407,370,955,162-2,767,011,611,056,432,742  2,000,094   10.00 %
//    2,767,011,611,056,432,743-3,689,348,814,741,910,323  2,000,159   10.00 %
//    3,689,348,814,741,910,324-4,611,686,018,427,387,904  1,999,552   10.00 %
//    4,611,686,018,427,387,905-5,534,023,222,112,865,485  1,998,248    9.99 %
//    5,534,023,222,112,865,486-6,456,360,425,798,343,066  2,000,696   10.00 %
//    6,456,360,425,798,343,067-7,378,697,629,483,820,647  2,001,637   10.01 %
//    7,378,697,629,483,820,648-8,301,034,833,169,298,228  2,002,870   10.01 %
//    8,301,034,833,169,298,229-9,223,372,036,854,775,807  2,000,303   10.00 %
Module Example8
    Public Sub Main()
        Const ONE_TENTH As Long = 922337203685477581

        Dim rnd As New Random()
        Dim number As Long
        Dim count(9) As Integer

        ' Generate 20 million long integers.
        For ctr As Integer = 1 To 20000000
            number = CLng(rnd.NextDouble() * Int64.MaxValue)
            ' Categorize random numbers.
            count(CInt(number \ ONE_TENTH)) += 1
        Next
        ' Display breakdown by range.
        Console.WriteLine("{0,28} {1,32}   {2,7}", "Range", "Count", "Pct.")
        Console.WriteLine()
        For ctr As Integer = 0 To 9
            Console.WriteLine("{0,25:N0}-{1,25:N0}  {2,8:N0}   {3,7:P2}", ctr * ONE_TENTH,
                            If(ctr < 9, ctr * ONE_TENTH + ONE_TENTH - 1, Int64.MaxValue),
                            count(ctr), count(ctr) / 20000000)
        Next
    End Sub
End Module
' The example displays output like the following:
'                           Range                            Count      Pct.
'    
'                            0-  922,337,203,685,477,580  1,996,148    9.98 %
'      922,337,203,685,477,581-1,844,674,407,370,955,161  2,000,293   10.00 %
'    1,844,674,407,370,955,162-2,767,011,611,056,432,742  2,000,094   10.00 %
'    2,767,011,611,056,432,743-3,689,348,814,741,910,323  2,000,159   10.00 %
'    3,689,348,814,741,910,324-4,611,686,018,427,387,904  1,999,552   10.00 %
'    4,611,686,018,427,387,905-5,534,023,222,112,865,485  1,998,248    9.99 %
'    5,534,023,222,112,865,486-6,456,360,425,798,343,066  2,000,696   10.00 %
'    6,456,360,425,798,343,067-7,378,697,629,483,820,647  2,001,637   10.01 %
'    7,378,697,629,483,820,648-8,301,034,833,169,298,228  2,002,870   10.01 %
'    8,301,034,833,169,298,229-9,223,372,036,854,775,807  2,000,303   10.00 %

Teknik alternatif yang menggunakan manipulasi bit tidak menghasilkan angka yang benar-benar acak. Teknik ini memanggil Next() untuk menghasilkan dua bilangan bulat, shift kiri satu per 32 bit, dan ER mereka bersama-sama. Teknik ini memiliki dua batasan:

  1. Karena bit 31 adalah bit tanda, nilai dalam bit 31 dari bilangan bulat panjang yang dihasilkan selalu 0. Ini dapat diatasi dengan menghasilkan 0 atau 1 acak, menggeser kiri 31 bit, dan ORing dengan bilangan bulat panjang acak asli.

  2. Lebih serius lagi, karena probabilitas nilai yang dikembalikan oleh Next() akan menjadi 0, akan ada beberapa jika ada angka acak dalam rentang 0x0-0x00000000FFFFFFFF.

Mengambil byte dalam rentang tertentu

Kelebihan beban Next metode memungkinkan Anda menentukan rentang angka acak, tetapi NextBytes metode tidak. Contoh berikut mengimplementasikan NextBytes metode yang memungkinkan Anda menentukan rentang byte yang dikembalikan. Ini mendefinisikan Random2 kelas yang berasal dari Random dan membebani metodenya NextBytes .

using System;

public class Example3
{
    public static void Main()
    {
        Random2 rnd = new Random2();
        Byte[] bytes = new Byte[10000];
        int[] total = new int[101];
        rnd.NextBytes(bytes, 0, 101);

        // Calculate how many of each value we have.
        foreach (var value in bytes)
            total[value]++;

        // Display the results.
        for (int ctr = 0; ctr < total.Length; ctr++)
        {
            Console.Write("{0,3}: {1,-3}   ", ctr, total[ctr]);
            if ((ctr + 1) % 5 == 0) Console.WriteLine();
        }
    }
}

public class Random2 : Random
{
    public Random2() : base()
    { }

    public Random2(int seed) : base(seed)
    { }

    public void NextBytes(byte[] bytes, byte minValue, byte maxValue)
    {
        for (int ctr = bytes.GetLowerBound(0); ctr <= bytes.GetUpperBound(0); ctr++)
            bytes[ctr] = (byte)Next(minValue, maxValue);
    }
}
// The example displays output like the following:
//         0: 115     1: 119     2: 92      3: 98      4: 92
//         5: 102     6: 103     7: 84      8: 93      9: 116
//        10: 91     11: 98     12: 106    13: 91     14: 92
//        15: 101    16: 100    17: 96     18: 97     19: 100
//        20: 101    21: 106    22: 112    23: 82     24: 85
//        25: 102    26: 107    27: 98     28: 106    29: 102
//        30: 109    31: 108    32: 94     33: 101    34: 107
//        35: 101    36: 86     37: 100    38: 101    39: 102
//        40: 113    41: 95     42: 96     43: 89     44: 99
//        45: 81     46: 89     47: 105    48: 100    49: 85
//        50: 103    51: 103    52: 93     53: 89     54: 91
//        55: 97     56: 105    57: 97     58: 110    59: 86
//        60: 116    61: 94     62: 117    63: 98     64: 110
//        65: 93     66: 102    67: 100    68: 105    69: 83
//        70: 81     71: 97     72: 85     73: 70     74: 98
//        75: 100    76: 110    77: 114    78: 83     79: 90
//        80: 96     81: 112    82: 102    83: 102    84: 99
//        85: 81     86: 100    87: 93     88: 99     89: 118
//        90: 95     91: 124    92: 108    93: 96     94: 104
//        95: 106    96: 99     97: 99     98: 92     99: 99
//       100: 108
open System

type Random2() =
    inherit Random()

    member this.NextBytes(bytes: byte[], minValue: byte, maxValue: byte) =
        for i=bytes.GetLowerBound(0) to bytes.GetUpperBound(0) do
            bytes.[i] <- this.Next(int minValue, int maxValue) |> byte

let rnd = Random2()
let bytes = Array.zeroCreate 10000
let total = Array.zeroCreate 101
rnd.NextBytes(bytes, 0uy, 101uy)

// Calculate how many of each value we have.
for v in bytes do 
    total.[int v] <- total.[int v] + 1

// Display the results.
for i = 0 to total.Length - 1 do
    printf "%3i: %-3i   " i total.[i]
    if (i + 1) % 5 = 0 then printfn ""

// The example displays output like the following:
//         0: 115     1: 119     2: 92      3: 98      4: 92
//         5: 102     6: 103     7: 84      8: 93      9: 116
//        10: 91     11: 98     12: 106    13: 91     14: 92
//        15: 101    16: 100    17: 96     18: 97     19: 100
//        20: 101    21: 106    22: 112    23: 82     24: 85
//        25: 102    26: 107    27: 98     28: 106    29: 102
//        30: 109    31: 108    32: 94     33: 101    34: 107
//        35: 101    36: 86     37: 100    38: 101    39: 102
//        40: 113    41: 95     42: 96     43: 89     44: 99
//        45: 81     46: 89     47: 105    48: 100    49: 85
//        50: 103    51: 103    52: 93     53: 89     54: 91
//        55: 97     56: 105    57: 97     58: 110    59: 86
//        60: 116    61: 94     62: 117    63: 98     64: 110
//        65: 93     66: 102    67: 100    68: 105    69: 83
//        70: 81     71: 97     72: 85     73: 70     74: 98
//        75: 100    76: 110    77: 114    78: 83     79: 90
//        80: 96     81: 112    82: 102    83: 102    84: 99
//        85: 81     86: 100    87: 93     88: 99     89: 118
//        90: 95     91: 124    92: 108    93: 96     94: 104
//        95: 106    96: 99     97: 99     98: 92     99: 99
//       100: 108
Module Example4
    Public Sub Main()
        Dim rnd As New Random2()
        Dim bytes(9999) As Byte
        Dim total(100) As Integer
        rnd.NextBytes(bytes, 0, 101)

        ' Calculate how many of each value we have.
        For Each value In bytes
            total(value) += 1
        Next

        ' Display the results.
        For ctr As Integer = 0 To total.Length - 1
            Console.Write("{0,3}: {1,-3}   ", ctr, total(ctr))
            If (ctr + 1) Mod 5 = 0 Then Console.WriteLine()
        Next
    End Sub
End Module

Public Class Random2 : Inherits Random
   Public Sub New()
      MyBase.New()
   End Sub   

   Public Sub New(seed As Integer)
      MyBase.New(seed)
   End Sub

   Public Overloads Sub NextBytes(bytes() As Byte, 
                                  minValue As Byte, maxValue As Byte)
      For ctr As Integer = bytes.GetLowerbound(0) To bytes.GetUpperBound(0)
         bytes(ctr) = CByte(MyBase.Next(minValue, maxValue))
      Next
   End Sub
End Class 
' The example displays output like the following:
'         0: 115     1: 119     2: 92      3: 98      4: 92
'         5: 102     6: 103     7: 84      8: 93      9: 116
'        10: 91     11: 98     12: 106    13: 91     14: 92
'        15: 101    16: 100    17: 96     18: 97     19: 100
'        20: 101    21: 106    22: 112    23: 82     24: 85
'        25: 102    26: 107    27: 98     28: 106    29: 102
'        30: 109    31: 108    32: 94     33: 101    34: 107
'        35: 101    36: 86     37: 100    38: 101    39: 102
'        40: 113    41: 95     42: 96     43: 89     44: 99
'        45: 81     46: 89     47: 105    48: 100    49: 85
'        50: 103    51: 103    52: 93     53: 89     54: 91
'        55: 97     56: 105    57: 97     58: 110    59: 86
'        60: 116    61: 94     62: 117    63: 98     64: 110
'        65: 93     66: 102    67: 100    68: 105    69: 83
'        70: 81     71: 97     72: 85     73: 70     74: 98
'        75: 100    76: 110    77: 114    78: 83     79: 90
'        80: 96     81: 112    82: 102    83: 102    84: 99
'        85: 81     86: 100    87: 93     88: 99     89: 118
'        90: 95     91: 124    92: 108    93: 96     94: 104
'        95: 106    96: 99     97: 99     98: 92     99: 99
'       100: 108

Metode NextBytes(Byte[], Byte, Byte) membungkus panggilan ke Next(Int32, Int32) metode dan menentukan nilai minimum dan satu lebih besar dari nilai maksimum (dalam hal ini, 0 dan 101) yang ingin kita kembalikan dalam array byte. Karena kami yakin bahwa nilai bilangan bulat yang dikembalikan oleh Next metode berada dalam rentang Byte jenis data, kita dapat dengan aman mentransmisikannya (dalam C# dan F#) atau mengonversinya (dalam Visual Basic) dari bilangan bulat ke byte.

Mengambil elemen dari array atau koleksi secara acak

Angka acak sering berfungsi sebagai indeks untuk mengambil nilai dari array atau koleksi. Untuk mengambil nilai indeks acak, Anda dapat memanggil Next(Int32, Int32) metode , dan menggunakan batas bawah array sebagai nilai argumennya minValue dan satu lebih besar dari batas atas array sebagai nilai argumennya maxValue . Untuk array berbasis nol, ini setara dengan propertinya Length , atau satu lebih besar dari nilai yang dikembalikan oleh Array.GetUpperBound metode . Contoh berikut secara acak mengambil nama kota di Amerika Serikat dari array kota.

String[] cities = { "Atlanta", "Boston", "Chicago", "Detroit",
                    "Fort Wayne", "Greensboro", "Honolulu", "Indianapolis",
                    "Jersey City", "Kansas City", "Los Angeles",
                    "Milwaukee", "New York", "Omaha", "Philadelphia",
                    "Raleigh", "San Francisco", "Tulsa", "Washington" };
Random rnd = new Random();
int index = rnd.Next(0, cities.Length);
Console.WriteLine("Today's city of the day: {0}",
                  cities[index]);

// The example displays output like the following:
//   Today's city of the day: Honolulu
let cities = 
    [| "Atlanta"; "Boston"; "Chicago"; "Detroit";
       "Fort Wayne"; "Greensboro"; "Honolulu"; "Indianapolis";
       "Jersey City"; "Kansas City"; "Los Angeles";
       "Milwaukee"; "New York"; "Omaha"; "Philadelphia";
       "Raleigh"; "San Francisco"; "Tulsa"; "Washington" |]

let rnd = Random()

let index = rnd.Next(0,cities.Length)

printfn "Today's city of the day: %s" cities.[index]

// The example displays output like the following:
//   Today's city of the day: Honolulu
Module Example1
    Public Sub Main()
        Dim cities() As String = {"Atlanta", "Boston", "Chicago", "Detroit",
                                 "Fort Wayne", "Greensboro", "Honolulu", "Indianapolis",
                                 "Jersey City", "Kansas City", "Los Angeles",
                                 "Milwaukee", "New York", "Omaha", "Philadelphia",
                                 "Raleigh", "San Francisco", "Tulsa", "Washington"}
        Dim rnd As New Random()
        Dim index As Integer = rnd.Next(0, cities.Length)
        Console.WriteLine("Today's city of the day: {0}",
                        cities(index))
    End Sub
End Module
' The example displays output like the following:
'   Today's city of the day: Honolulu

Mengambil elemen unik dari array atau koleksi

Generator angka acak selalu dapat mengembalikan nilai duplikat. Ketika rentang angka menjadi lebih kecil atau jumlah nilai yang dihasilkan menjadi lebih besar, probabilitas duplikat tumbuh. Jika nilai acak harus unik, lebih banyak angka dihasilkan untuk mengimbangi duplikat, yang mengakibatkan performa yang semakin buruk.

Ada sejumlah teknik untuk menangani skenario ini. Salah satu solusi umumnya adalah membuat array atau koleksi yang berisi nilai yang akan diambil, dan array paralel yang berisi angka floating-point acak. Array kedua diisi dengan angka acak pada saat array pertama dibuat, dan Array.Sort(Array, Array) metode ini digunakan untuk mengurutkan array pertama dengan menggunakan nilai dalam array paralel.

Misalnya, jika Anda mengembangkan permainan Solitaire, Anda ingin memastikan bahwa setiap kartu hanya digunakan sekali. Alih-alih menghasilkan angka acak untuk mengambil kartu dan melacak apakah kartu tersebut telah dibagikan, Anda dapat membuat array paralel dari angka acak yang dapat digunakan untuk mengurutkan dek. Setelah dek diurutkan, aplikasi Anda dapat mempertahankan pointer untuk menunjukkan indeks kartu berikutnya di dek.

Contoh berikut menggambarkan pendekatan ini. Ini mendefinisikan Card kelas yang mewakili kartu bermain dan Dealer kelas yang menawarkan dek kartu yang diacak. Dealer Konstruktor kelas mengisi dua array: deck array yang memiliki cakupan kelas dan yang mewakili semua kartu di dek; dan array lokal order yang memiliki jumlah elemen deck yang sama dengan array dan diisi dengan nilai yang dihasilkan Double secara acak. Metode Array.Sort(Array, Array) ini kemudian dipanggil untuk mengurutkan deck array berdasarkan nilai dalam order array.

using System;

// A class that represents an individual card in a playing deck.
public class Card
{
    public Suit Suit;
    public FaceValue FaceValue;

    public override String ToString()
    {
        return String.Format("{0:F} of {1:F}", this.FaceValue, this.Suit);
    }
}

public enum Suit { Hearts, Diamonds, Spades, Clubs };

public enum FaceValue
{
    Ace = 1, Two, Three, Four, Five, Six,
    Seven, Eight, Nine, Ten, Jack, Queen,
    King
};

public class Dealer
{
    Random rnd;
    // A deck of cards, without Jokers.
    Card[] deck = new Card[52];
    // Parallel array for sorting cards.
    Double[] order = new Double[52];
    // A pointer to the next card to deal.
    int ptr = 0;
    // A flag to indicate the deck is used.
    bool mustReshuffle = false;

    public Dealer()
    {
        rnd = new Random();
        // Initialize the deck.
        int deckCtr = 0;
        foreach (var suit in Enum.GetValues(typeof(Suit)))
        {
            foreach (var faceValue in Enum.GetValues(typeof(FaceValue)))
            {
                Card card = new Card();
                card.Suit = (Suit)suit;
                card.FaceValue = (FaceValue)faceValue;
                deck[deckCtr] = card;
                deckCtr++;
            }
        }

        for (int ctr = 0; ctr < order.Length; ctr++)
            order[ctr] = rnd.NextDouble();

        Array.Sort(order, deck);
    }

    public Card[] Deal(int numberToDeal)
    {
        if (mustReshuffle)
        {
            Console.WriteLine("There are no cards left in the deck");
            return null;
        }

        Card[] cardsDealt = new Card[numberToDeal];
        for (int ctr = 0; ctr < numberToDeal; ctr++)
        {
            cardsDealt[ctr] = deck[ptr];
            ptr++;
            if (ptr == deck.Length)
                mustReshuffle = true;

            if (mustReshuffle & ctr < numberToDeal - 1)
            {
                Console.WriteLine("Can only deal the {0} cards remaining on the deck.",
                                  ctr + 1);
                return cardsDealt;
            }
        }
        return cardsDealt;
    }
}

public class Example17
{
    public static void Main()
    {
        Dealer dealer = new Dealer();
        ShowCards(dealer.Deal(20));
    }

    private static void ShowCards(Card[] cards)
    {
        foreach (var card in cards)
            if (card != null)
                Console.WriteLine("{0} of {1}", card.FaceValue, card.Suit);
    }
}
// The example displays output like the following:
//       Six of Diamonds
//       King of Clubs
//       Eight of Clubs
//       Seven of Clubs
//       Queen of Clubs
//       King of Hearts
//       Three of Spades
//       Ace of Clubs
//       Four of Hearts
//       Three of Diamonds
//       Nine of Diamonds
//       Two of Hearts
//       Ace of Hearts
//       Three of Hearts
//       Four of Spades
//       Eight of Hearts
//       Queen of Diamonds
//       Two of Clubs
//       Four of Diamonds
//       Jack of Hearts
open System

type Suit =
    | Clubs
    | Diamonds
    | Hearts
    | Spades

type Face =
    | Ace | Two | Three
    | Four | Five | Six
    | Seven | Eight | Nine
    | Ten | Jack | Queen | King

type Card = { Face: Face; Suit: Suit }

let suits = [ Clubs; Diamonds; Hearts; Spades ]
let faces = [ Ace; Two; Three; Four; Five; Six; Seven; Eight; Nine; Ten; Jack; Queen; King ]

type Dealer() =
    let rnd = Random()
    let mutable pos = 0
    // Parallel array for sorting cards.
    let order = Array.init (suits.Length * faces.Length) (fun _ -> rnd.NextDouble() )
    // A deck of cards, without Jokers.
    let deck = [|
        for s in suits do
            for f in faces do
                { Face = f; Suit = s } |]
    // Shuffle the deck.
    do Array.Sort(order, deck)

    // Deal a number of cards from the deck, return None if failed
    member _.Deal(numberToDeal) : Card [] option = 
        if numberToDeal = 0 || pos = deck.Length then
            printfn "There are no cards left in the deck"
            None
        else 
            let cards = deck.[pos .. numberToDeal + pos - 1]
            if numberToDeal > deck.Length - pos then
                printfn "Can only deal the %i cards remaining on the deck." (deck.Length - pos)
            pos <- min (pos + numberToDeal) deck.Length
            Some cards

let showCards cards = 
    for card in cards do
        printfn $"{card.Face} of {card.Suit}"

let dealer = Dealer()

dealer.Deal 20
|> Option.iter showCards

// The example displays output like the following:
//       Six of Diamonds
//       King of Clubs
//       Eight of Clubs
//       Seven of Clubs
//       Queen of Clubs
//       King of Hearts
//       Three of Spades
//       Ace of Clubs
//       Four of Hearts
//       Three of Diamonds
//       Nine of Diamonds
//       Two of Hearts
//       Ace of Hearts
//       Three of Hearts
//       Four of Spades
//       Eight of Hearts
//       Queen of Diamonds
//       Two of Clubs
//       Four of Diamonds
//       Jack of Hearts
' A class that represents an individual card in a playing deck.
Public Class Card
   Public Suit As Suit
   Public FaceValue As FaceValue
   
   Public Overrides Function ToString() As String
      Return String.Format("{0:F} of {1:F}", Me.FaceValue, Me.Suit)
   End Function
End Class

Public Enum Suit As Integer
   Hearts = 0
   Diamonds = 1
   Spades = 2
   Clubs = 3
End Enum

Public Enum FaceValue As Integer
   Ace = 1
   Two = 2
   Three = 3
   Four = 4
   Five = 5
   Six = 6
   Seven = 7
   Eight = 8
   Nine = 9
   Ten = 10
   Jack = 11
   Queen = 12
   King = 13
End Enum

Public Class Dealer
   Dim rnd As Random
   ' A deck of cards, without Jokers.
   Dim deck(51) As Card
   ' Parallel array for sorting cards.
   Dim order(51) As Double
   ' A pointer to the next card to deal.
   Dim ptr As Integer = 0
   ' A flag to indicate the deck is used.
   Dim mustReshuffle As Boolean
   
   Public Sub New()
      rnd = New Random()
      ' Initialize the deck.
      Dim deckCtr As Integer = 0
      For Each Suit In [Enum].GetValues(GetType(Suit))
         For Each faceValue In [Enum].GetValues(GetType(FaceValue))
            Dim card As New Card()
            card.Suit = CType(Suit, Suit)
            card.FaceValue = CType(faceValue, FaceValue)
            deck(deckCtr) = card  
            deckCtr += 1
         Next
      Next
      For ctr As Integer = 0 To order.Length - 1
         order(ctr) = rnd.NextDouble()   
      Next   
      Array.Sort(order, deck)
   End Sub

   Public Function Deal(numberToDeal As Integer) As Card()
      If mustReshuffle Then
         Console.WriteLine("There are no cards left in the deck")
         Return Nothing
      End If
      
      Dim cardsDealt(numberToDeal - 1) As Card
      For ctr As Integer = 0 To numberToDeal - 1
         cardsDealt(ctr) = deck(ptr)
         ptr += 1
         If ptr = deck.Length Then 
            mustReshuffle = True
         End If
         If mustReshuffle And ctr < numberToDeal - 1
            Console.WriteLine("Can only deal the {0} cards remaining on the deck.", 
                              ctr + 1)
            Return cardsDealt
         End If
      Next
      Return cardsDealt
   End Function
End Class

Public Module Example
   Public Sub Main()
      Dim dealer As New Dealer()
      ShowCards(dealer.Deal(20))
   End Sub
   
   Private Sub ShowCards(cards() As Card)
      For Each card In cards
         If card IsNot Nothing Then _
            Console.WriteLine("{0} of {1}", card.FaceValue, card.Suit)
      Next
   End Sub
End Module
' The example displays output like the following:
'       Six of Diamonds
'       King of Clubs
'       Eight of Clubs
'       Seven of Clubs
'       Queen of Clubs
'       King of Hearts
'       Three of Spades
'       Ace of Clubs
'       Four of Hearts
'       Three of Diamonds
'       Nine of Diamonds
'       Two of Hearts
'       Ace of Hearts
'       Three of Hearts
'       Four of Spades
'       Eight of Hearts
'       Queen of Diamonds
'       Two of Clubs
'       Four of Diamonds
'       Jack of Hearts