Bagikan melalui


MpiStep Kelas

Membuat langkah alur Azure Machine Learning untuk menjalankan pekerjaan MPI.

Untuk contoh penggunakan MpiStep, lihat notebook https://aka.ms/pl-style-trans.

Buat langkah alur Azure ML untuk menjalankan pekerjaan MPI.

TIDAK DIGUNAKAN LAGI. Gunakan CommandStep sebagai gantinya. Misalnya lihat Cara menjalankan pelatihan terdistribusi dalam alur dengan CommandStep.

Warisan

Konstruktor

MpiStep(name=None, source_directory=None, script_name=None, arguments=None, compute_target=None, node_count=None, process_count_per_node=None, inputs=None, outputs=None, allow_reuse=True, version=None, hash_paths=None, **kwargs)

Parameter

Nama Deskripsi
name
str

[Diperlukan] Nama modul.

Nilai default: None
source_directory
str

[Diperlukan] Folder yang berisi skrip Python, conda env, dan sumber daya lain yang digunakan dalam langkah tersebut.

Nilai default: None
script_name
str

[Diperlukan] Nama skrip Python yang relatif terhadap source_directory.

Nilai default: None
arguments

[Diperlukan] Daftar argumen baris perintah.

Nilai default: None
compute_target

[Diperlukan] Target komputasi untuk digunakan.

Nilai default: None
node_count
int

[Diperlukan] Jumlah node dalam target komputasi yang digunakan untuk pelatihan. Jika lebih besar dari 1, pekerjaan terdistribusi mpi akan dijalankan. Hanya target komputasi AmlCompute yang didukung untuk pekerjaan terdistribusi. Nilai PipelineParameter didukung.

Nilai default: None
process_count_per_node
int

[Diperlukan] Jumlah proses per node. Jika lebih besar dari 1, pekerjaan terdistribusi mpi akan dijalankan. Hanya target komputasi AmlCompute yang didukung untuk pekerjaan terdistribusi. Nilai PipelineParameter didukung.

Nilai default: None
inputs

Daftar pengikatan port input.

Nilai default: None
outputs

Daftar pengikatan port output.

Nilai default: None
params
Diperlukan

Kamus pasangan nama-nilai yang terdaftar sebagai variabel lingkungan dengan "AML_PARAMETER_".

allow_reuse

Menunjukkan apakah langkah tersebut harus menggunakan kembali hasil sebelumnya saat dijalankan lagi dengan pengaturan yang sama. Penggunaan kembali diaktifkan secara default. Jika konten langkah (skrip/dependensi) serta input dan parameter tetap tidak berubah, output dari eksekusi sebelumnya dari langkah ini digunakan ulang. Saat menggunakan ulang langkah tersebut, daripada mengirimkan pekerjaan ke komputasi, hasil dari eksekusi sebelumnya segera dibuat tersedia untuk langkah selanjutnya. Jika Anda menggunakan himpunan data Azure Machine Learning sebagai input, penggunaan ulang ditentukan oleh apakah definisi himpunan data telah berubah, bukan oleh apakah data yang mendasarinya telah berubah.

Nilai default: True
version
str

Tag versi opsional untuk menunjukkan perubahan fungsionalitas untuk modul.

Nilai default: None
hash_paths

TIDAK DIGUNAKAN LAGI: tidak lagi diperlukan.

Daftar jalur ke hash saat memeriksa perubahan ke konten langkah. Jika tidak ada perubahan yang terdeteksi, alur akan menggunakan ulang konten langkah dari eksekusi sebelumnya. Secara default, konten source_directory di-hash kecuali untuk file yang terdaftar di .amlignore atau .gitignore.

Nilai default: None
use_gpu
Diperlukan

Menunjukkan apakah lingkungan untuk menjalankan eksperimen harus mendukung GPU. Jika True, gambar Docker default berbasis GPU akan digunakan di lingkungan. Jika False, gambar berbasis CPU akan digunakan. Gambar docker default (CPU atau GPU) hanya akan digunakan jika parameter custom_docker_image tidak diatur. Pengaturan ini hanya digunakan di target komputasi yang mendukung Docker.

use_docker
Diperlukan

Menunjukkan apakah lingkungan untuk menjalankan eksperimen harus berbasis Docker.

custom_docker_image
Diperlukan
str

Nama gambar Docker dari mana gambar yang akan digunakan untuk pelatihan akan dibuat. Jika tidak diatur, gambar berbasis CPU default akan digunakan sebagai gambar dasar.

image_registry_details
Diperlukan

Detail dari registri gambar Docker.

user_managed
Diperlukan

Menunjukkan apakah Azure Machine Learning menggunakan kembali lingkungan Python yang ada; False berarti bahwa Azure Machine Learning akan membuat lingkungan Python berdasarkan spesifikasi dependensi conda.

conda_packages
Diperlukan

Daftar untai (karakter) yang menunjukkan paket conda untuk ditambahkan ke lingkungan Python.

pip_packages
Diperlukan

Daftar untai yang menunjukkan paket pip untuk ditambahkan ke lingkungan Python.

pip_requirements_file_path
Diperlukan
str

Jalur relatif ke file teks persyaratan pip. Parameter ini dapat ditentukan dalam kombinasi dengan parameter pip_packages.

environment_definition
Diperlukan

EnvironmentDefinition untuk eksperimen. Ini termasuk PythonSection dan DockerSection dan variabel lingkungan. Setiap opsi lingkungan yang tidak langsung diekspos melalui parameter lain ke konstruksi MpiStep dapat diatur menggunakan parameter environment_definition. Jika parameter ini ditentukan, parameter ini akan lebih diutamakan daripada parameter terkait lingkungan lainnya seperti use_gpu, custom_docker_image, conda_packages atau pip_packages dan kesalahan akan dilaporkan pada kombinasi yang tidak valid ini.

name
Diperlukan
str

[Diperlukan] Nama modul.

source_directory
Diperlukan
str

[Diperlukan] Folder yang berisi skrip Python, conda env, dan sumber daya lain yang digunakan dalam langkah tersebut.

script_name
Diperlukan
str

[Diperlukan] Nama skrip Python yang relatif terhadap source_directory.

arguments
Diperlukan

[Diperlukan] Daftar argumen baris perintah.

compute_target
Diperlukan
<xref:azureml.core.compute.AmlComputeCompute>, str

[Diperlukan] Target komputasi untuk digunakan.

node_count
Diperlukan
int

[Diperlukan] Jumlah simpul dalam target komputasi yang digunakan untuk pelatihan. Jika lebih besar dari 1, pekerjaan terdistribusi mpi akan dijalankan. Hanya target komputasi AmlCompute yang didukung untuk pekerjaan terdistribusi. Nilai PipelineParameter didukung.

process_count_per_node
Diperlukan
int

[Diperlukan] Jumlah proses per simpul. Jika lebih besar dari 1, pekerjaan terdistribusi mpi akan dijalankan. Hanya target komputasi AmlCompute yang didukung untuk pekerjaan terdistribusi. Nilai PipelineParameter didukung.

inputs
Diperlukan

Daftar pengikatan port input.

outputs
Diperlukan

Daftar pengikatan port output.

params
Diperlukan

Kamus pasangan nilai nama yang terdaftar sebagai variabel lingkungan dengan ">>AML_PARAMETER_<<".

allow_reuse
Diperlukan

Menunjukkan Apakah langkah harus menggunakan kembali hasil sebelumnya saat dijalankan kembali dengan parameter yang sama tetap tidak berubah, output dari eksekusi sebelumnya dari langkah ini digunakan kembali. Saat menggunakan ulang langkah tersebut, daripada mengirimkan pekerjaan ke komputasi, hasil dari eksekusi sebelumnya segera dibuat tersedia untuk langkah selanjutnya. Jika Anda menggunakan himpunan data Azure Machine Learning sebagai input, penggunaan ulang ditentukan oleh apakah definisi himpunan data telah berubah, bukan oleh apakah data yang mendasarinya telah berubah.

version
Diperlukan
str

Tag versi opsional untuk menunjukkan perubahan fungsionalitas untuk modul

hash_paths
Diperlukan

TIDAK DIGUNAKAN LAGI: tidak lagi diperlukan.

Daftar jalur ke hash saat memeriksa perubahan ke konten langkah. Jika tidak ada perubahan yang terdeteksi, alur akan menggunakan ulang konten langkah dari eksekusi sebelumnya. Secara default, konten source_directory di-hash kecuali untuk file yang terdaftar di .amlignore atau .gitignore.

use_gpu
Diperlukan

Menunjukkan apakah lingkungan untuk menjalankan eksperimen harus mendukung GPU. Jika True, gambar Docker default berbasis GPU akan digunakan di lingkungan. Jika False, gambar berbasis CPU akan digunakan. Gambar docker default (CPU atau GPU) hanya akan digunakan jika parameter custom_docker_image tidak diatur. Pengaturan ini hanya digunakan di target komputasi yang mendukung Docker.

use_docker
Diperlukan

Menunjukkan apakah lingkungan untuk menjalankan eksperimen harus berbasis Docker. custom_docker_image (str): Nama gambar docker tempat gambar digunakan untuk pekerjaan mpi akan dibangun. Jika tidak diatur, gambar berbasis CPU default akan digunakan sebagai gambar dasar.

custom_docker_image
Diperlukan
str

Nama gambar Docker dari mana gambar yang akan digunakan untuk pelatihan akan dibuat. Jika tidak diatur, gambar berbasis CPU default akan digunakan sebagai gambar dasar.

image_registry_details
Diperlukan

Detail dari registri gambar Docker.

user_managed
Diperlukan

Menunjukkan apakah Azure Machine Learning menggunakan kembali lingkungan Python yang ada; False berarti bahwa Azure Machine Learning akan membuat lingkungan Python berdasarkan spesifikasi dependensi conda.

conda_packages
Diperlukan

Daftar untai (karakter) yang menunjukkan paket conda untuk ditambahkan ke lingkungan Python.

pip_packages
Diperlukan

Daftar untai yang menunjukkan paket pip untuk ditambahkan ke lingkungan Python.

pip_requirements_file_path
Diperlukan
str

Jalur relatif ke file teks persyaratan pip. Parameter ini dapat ditentukan dalam kombinasi dengan parameter pip_packages.

environment_definition
Diperlukan

EnvironmentDefinition untuk eksperimen. Ini termasuk PythonSection dan DockerSection dan variabel lingkungan. Setiap opsi lingkungan yang tidak langsung diekspos melalui parameter lain ke konstruksi MpiStep dapat diatur menggunakan parameter environment_definition. Jika parameter ini ditentukan, parameter ini akan lebih diutamakan daripada parameter terkait lingkungan lainnya seperti use_gpu, custom_docker_image, conda_packages atau pip_packages dan kesalahan akan dilaporkan pada kombinasi yang tidak valid ini.