RScriptStep Kelas
Catatan
Ini adalah kelas eksperimental, dan dapat berubah kapan saja. Lihat https://aka.ms/azuremlexperimental untuk mengetahui informasi selengkapnya.
Buat langkah Alur Azure Machine Learning yang menjalankan skrip R.
Buat langkah Alur Azure ML yang menjalankan skrip R.
TIDAK DIGUNAKAN LAGI. Gunakan CommandStep sebagai gantinya. Sebagai contoh, lihat Cara menjalankan skrip R pada alur menggunakan CommandStep.
- Warisan
-
azureml.pipeline.core._python_script_step_base._PythonScriptStepBaseRScriptStep
Konstruktor
RScriptStep(script_name, name=None, arguments=None, compute_target=None, runconfig=None, runconfig_pipeline_params=None, inputs=None, outputs=None, params=None, source_directory=None, use_gpu=False, custom_docker_image=None, cran_packages=None, github_packages=None, custom_url_packages=None, allow_reuse=True, version=None)
Parameter
Nama | Deskripsi |
---|---|
script_name
Diperlukan
|
[Diperlukan] Nama skrip R relatif terhadap |
name
Diperlukan
|
Nama langkah. Jika tidak ditentukan, |
arguments
Diperlukan
|
Argumen baris perintah untuk file skrip R. Argumen akan diteruskan untuk melakukan komputasi melalui parameter |
compute_target
Diperlukan
|
[Diperlukan] Target komputasi untuk digunakan. Jika tidak ditentukan, target dari |
runconfig
Diperlukan
|
[Diperlukan] Konfigurasi eksekusi yang merangkum informasi yang diperlukan untuk mengirimkan eksekusi pelatihan dalam eksperimen. Ini diperlukan untuk menentukan konfigurasi eksekusi R yang dapat ditentukan di RSection. RSection diperlukan untuk langkah ini. |
runconfig_pipeline_params
Diperlukan
|
Mengambil alih properti runconfig saat runtime menggunakan pasangan kunci-nilai masing-masing dengan nama properti runconfig dan PipelineParameter untuk properti tersebut. Nilai yang didukung: 'NodeCount', 'MpiProcessCountPerNode', 'TensorflowWorkerCount', 'TensorflowParameterServerCount' |
inputs
Diperlukan
|
list[Union[InputPortBinding, DataReference, PortDataReference, PipelineData, PipelineOutputFileDataset, PipelineOutputTabularDataset, DatasetConsumptionConfig]]
Daftar pengikatan port input. |
outputs
Diperlukan
|
Daftar pengikatan port output. |
params
Diperlukan
|
Kamus pasangan nama-nilai yang terdaftar sebagai variabel lingkungan dengan "AML_PARAMETER_". |
source_directory
Diperlukan
|
Folder yang berisi skrip R, conda env, dan sumber daya lain yang digunakan dalam langkah. |
use_gpu
Diperlukan
|
Menunjukkan apakah lingkungan untuk menjalankan eksperimen harus mendukung GPU.
Jika True, gambar Docker default berbasis GPU akan digunakan di lingkungan. Jika False, gambar berbasis CPU akan digunakan. Gambar docker default (CPU atau GPU) hanya akan digunakan jika pengguna tidak mengatur parameter |
custom_docker_image
Diperlukan
|
Nama gambar Docker dari mana gambar yang akan digunakan untuk pelatihan akan dibuat. Jika tidak diatur, gambar berbasis CPU default akan digunakan sebagai gambar dasar. Gambar ini sudah tidak digunakan lagi dan akan dihapus di rilis mendatang. Gunakan base_image di DockerSection sebagai gantinya. |
cran_packages
Diperlukan
|
Paket CRAN yang akan dipasang. Gambar ini sudah tidak digunakan lagi dan akan dihapus di rilis mendatang. Gunakan RSection.cran_packages sebagai gantinya. |
github_packages
Diperlukan
|
Paket GitHub yang akan dipasang. Gambar ini sudah tidak digunakan lagi dan akan dihapus di rilis mendatang. Gunakan RSection.github_packages sebagai gantinya. |
custom_url_packages
Diperlukan
|
Paket yang akan dipasang dari URL lokal, direktori, atau kustom. Gambar ini sudah tidak digunakan lagi dan akan dihapus di rilis mendatang. Gunakan RSection.custom_url_packages sebagai gantinya. |
allow_reuse
Diperlukan
|
Menunjukkan apakah langkah tersebut harus menggunakan kembali hasil sebelumnya saat dijalankan lagi dengan pengaturan yang sama. Penggunaan kembali diaktifkan secara default. Jika konten langkah (skrip/dependensi) serta input dan parameter tetap tidak berubah, output dari eksekusi sebelumnya dari langkah ini digunakan ulang. Saat menggunakan ulang langkah tersebut, daripada mengirimkan pekerjaan ke komputasi, hasil dari eksekusi sebelumnya segera dibuat tersedia untuk langkah selanjutnya. Jika Anda menggunakan himpunan data Azure Machine Learning sebagai input, penggunaan ulang ditentukan oleh apakah definisi himpunan data telah berubah, bukan oleh apakah data yang mendasarinya telah berubah. |
version
Diperlukan
|
Tag versi opsional untuk menunjukkan perubahan fungsionalitas untuk langkah tersebut. |
script_name
Diperlukan
|
[Diperlukan] Nama skrip R relatif terhadap |
name
Diperlukan
|
Nama langkah. Jika tidak ditentukan, |
arguments
Diperlukan
|
Argumen baris perintah untuk file skrip R. Argumen akan diteruskan untuk melakukan komputasi melalui parameter |
compute_target
Diperlukan
|
[Diperlukan] Target komputasi untuk digunakan. Jika tidak ditentukan, target dari |
runconfig
Diperlukan
|
[Diperlukan] Konfigurasi eksekusi yang merangkum informasi yang diperlukan untuk mengirimkan eksekusi pelatihan dalam eksperimen. Ini diperlukan untuk menentukan konfigurasi eksekusi R yang dapat ditentukan di RSection. RSection diperlukan untuk langkah ini. |
runconfig_pipeline_params
Diperlukan
|
Mengambil alih properti runconfig saat runtime menggunakan pasangan kunci-nilai masing-masing dengan nama properti runconfig dan PipelineParameter untuk properti tersebut. Nilai yang didukung: 'NodeCount', 'MpiProcessCountPerNode', 'TensorflowWorkerCount', 'TensorflowParameterServerCount' |
inputs
Diperlukan
|
list[Union[InputPortBinding, DataReference, PortDataReference, PipelineData, PipelineOutputFileDataset, PipelineOutputTabularDataset, DatasetConsumptionConfig]]
Daftar pengikatan port input. |
outputs
Diperlukan
|
Daftar pengikatan port output. |
params
Diperlukan
|
Kamus pasangan nama-nilai yang terdaftar sebagai variabel lingkungan dengan "AML_PARAMETER_". |
source_directory
Diperlukan
|
Folder yang berisi skrip R, conda env, dan sumber daya lain yang digunakan dalam langkah. |
use_gpu
Diperlukan
|
Menunjukkan apakah lingkungan untuk menjalankan eksperimen harus mendukung GPU.
Jika True, gambar Docker default berbasis GPU akan digunakan di lingkungan. Jika False, gambar berbasis CPU akan digunakan. Gambar docker default (CPU atau GPU) hanya akan digunakan jika pengguna tidak mengatur parameter |
custom_docker_image
Diperlukan
|
Nama gambar Docker dari mana gambar yang akan digunakan untuk pelatihan akan dibuat. Jika tidak diatur, gambar berbasis CPU default akan digunakan sebagai gambar dasar. Gambar ini sudah tidak digunakan lagi dan akan dihapus di rilis mendatang. Gunakan base_image di DockerSection sebagai gantinya. |
cran_packages
Diperlukan
|
Paket CRAN yang akan dipasang. Gambar ini sudah tidak digunakan lagi dan akan dihapus di rilis mendatang. Gunakan RSection.cran_packages sebagai gantinya. |
github_packages
Diperlukan
|
Paket GitHub yang akan dipasang. Gambar ini sudah tidak digunakan lagi dan akan dihapus di rilis mendatang. Gunakan RSection.github_packages sebagai gantinya. |
custom_url_packages
Diperlukan
|
Paket yang akan dipasang dari URL lokal, direktori, atau kustom. Gambar ini sudah tidak digunakan lagi dan akan dihapus di rilis mendatang. Gunakan RSection.custom_url_packages sebagai gantinya. |
allow_reuse
Diperlukan
|
Menunjukkan apakah langkah tersebut harus menggunakan kembali hasil sebelumnya saat dijalankan lagi dengan pengaturan yang sama. Penggunaan kembali diaktifkan secara default. Jika konten langkah (skrip/dependensi) serta input dan parameter tetap tidak berubah, output dari eksekusi sebelumnya dari langkah ini digunakan ulang. Saat menggunakan ulang langkah tersebut, daripada mengirimkan pekerjaan ke komputasi, hasil dari eksekusi sebelumnya segera dibuat tersedia untuk langkah selanjutnya. Jika Anda menggunakan himpunan data Azure Machine Learning sebagai input, penggunaan ulang ditentukan oleh apakah definisi himpunan data telah berubah, bukan oleh apakah data yang mendasarinya telah berubah. |
version
Diperlukan
|
Tag versi opsional untuk menunjukkan perubahan fungsionalitas untuk langkah tersebut. |
Keterangan
RScriptStep adalah langkah dasar bawaan untuk menjalankan skrip R pada target komputasi. Dibutuhkan nama skrip dan parameter opsional lainnya seperti argumen untuk skrip, target komputasi, input, dan output. Anda harus menggunakan RunConfiguration untuk menentukan persyaratan bagi RScriptStep, seperti gambar docker kustom, paket cran/github yang diperlukan.
Praktik terbaik untuk bekerja dengan RScriptStep adalah menggunakan folder terpisah untuk skrip dan file dependen apa pun yang terkait dengan langkah, dan tentukan folder tersebut dengan parameter source_directory
.
Mengikuti praktik terbaik ini memiliki dua keuntungan. Pertama, ini membantu mengurangi ukuran snapshot yang dibuat untuk langkah tersebut karena yang perlu dilakukan hanyalah melakukan snapshot. Kedua, output langkah dari eksekusi sebelumnya dapat digunakan kembali jika tidak ada perubahan pada source_directory
yang akan memicu unggahan ulang snapshot.
Contoh kode berikut menunjukkan cara menggunakan RScriptStep dalam skenario pelatihan pembelajaran mesin.
from azureml.core.runconfig import RunConfiguration
from azureml.core.environment import Environment, RSection, RCranPackage
from azureml.pipeline.steps import RScriptStep
rc = RunConfiguration()
rc.framework='R'
rc.environment.r = RSection() # R details with required packages
rc.environment.docker.enabled = True # to enable docker image
rc.environment.docker.base_image = '<custom user image>' # to use custom image
cran_package1 = RCranPackage()
cran_package1.name = "ggplot2"
cran_package1.repository = "www.customurl.com"
cran_package1.version = "2.1"
rc.environment.r.cran_packages = [cran_package1]
trainStep = RScriptStep(script_name="train.R",
arguments=["--input", blob_input_data, "--output", output_data1],
inputs=[blob_input_data],
outputs=[output_data1],
compute_target=compute_target,
use_gpu=False,
runconfig=rc,
source_directory=project_folder)
Lihat https://aka.ms/pl-first-pipeline untuk detail selengkapnya tentang membuat alur secara umum. Lihat https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.environment.rsection untuk detail selengkapnya tentang RSection.
Metode
create_node |
Buat node untuk RScriptStep dan tambahkan ke grafik yang ditentukan. TIDAK DIGUNAKAN LAGI. Gunakan CommandStep sebagai gantinya. Sebagai contoh, lihat Cara menjalankan skrip R pada alur menggunakan CommandStep. Metode ini tidak dimaksudkan untuk digunakan secara langsung. Ketika alur dibuat dengan langkah ini, Azure Machine Learning secara otomatis meneruskan parameter yang diperlukan melalui metode ini sehingga langkah tersebut dapat ditambahkan ke grafik alur yang menunjukkan alur kerja. |
create_node
Buat node untuk RScriptStep dan tambahkan ke grafik yang ditentukan.
TIDAK DIGUNAKAN LAGI. Gunakan CommandStep sebagai gantinya. Sebagai contoh, lihat Cara menjalankan skrip R pada alur menggunakan CommandStep.
Metode ini tidak dimaksudkan untuk digunakan secara langsung. Ketika alur dibuat dengan langkah ini, Azure Machine Learning secara otomatis meneruskan parameter yang diperlukan melalui metode ini sehingga langkah tersebut dapat ditambahkan ke grafik alur yang menunjukkan alur kerja.
create_node(graph, default_datastore, context)
Parameter
Nama | Deskripsi |
---|---|
graph
Diperlukan
|
Objek grafik untuk menambahkan node. |
default_datastore
Diperlukan
|
Datastore default. |
context
Diperlukan
|
<xref:azureml.pipeline.core._GraphContext>
Konteks grafik. |
Mengembalikan
Jenis | Deskripsi |
---|---|
Node yang dibuat. |