Catatan
Akses ke halaman ini memerlukan otorisasi. Anda dapat mencoba masuk atau mengubah direktori.
Akses ke halaman ini memerlukan otorisasi. Anda dapat mencoba mengubah direktori.
Peringatan
Kerangka Kerja Proses Kernel Semantik bersifat eksperimental, masih dalam pengembangan dan dapat berubah.
Ikhtisar
Di bagian sebelumnya kami membangun Proses sederhana untuk membantu kami mengotomatiskan pembuatan dokumentasi untuk produk baru kami. Di bagian ini kami akan meningkatkan proses tersebut dengan menambahkan langkah proofreading. Langkah ini akan menggunakan dan LLM untuk menilai dokumentasi yang dihasilkan sebagai Pass/Fail, dan memberikan perubahan yang direkomendasikan jika diperlukan. Dengan memanfaatkan dukungan Process Frameworks untuk siklus, kita dapat melangkah lebih jauh dan secara otomatis menerapkan perubahan yang direkomendasikan (jika ada) dan kemudian memulai siklus di atas, mengulangi ini sampai konten memenuhi bilah kualitas kami. Proses yang diperbarui akan terlihat seperti ini:
Pembaruan untuk proses
Kita perlu membuat langkah proofreader baru kita dan juga membuat beberapa perubahan pada langkah pembuatan dokumen kita yang akan memungkinkan kita untuk menerapkan saran jika diperlukan.
Menambahkan langkah proofreader
// A process step to proofread documentation
public class ProofreadStep : KernelProcessStep
{
[KernelFunction]
public async Task ProofreadDocumentationAsync(Kernel kernel, KernelProcessStepContext context, string documentation)
{
Console.WriteLine($"{nameof(ProofreadDocumentationAsync)}:\n\tProofreading documentation...");
var systemPrompt =
"""
Your job is to proofread customer facing documentation for a new product from Contoso. You will be provide with proposed documentation
for a product and you must do the following things:
1. Determine if the documentation is passes the following criteria:
1. Documentation must use a professional tone.
1. Documentation should be free of spelling or grammar mistakes.
1. Documentation should be free of any offensive or inappropriate language.
1. Documentation should be technically accurate.
2. If the documentation does not pass 1, you must write detailed feedback of the changes that are needed to improve the documentation.
""";
ChatHistory chatHistory = new ChatHistory(systemPrompt);
chatHistory.AddUserMessage(documentation);
// Use structured output to ensure the response format is easily parsable
OpenAIPromptExecutionSettings settings = new OpenAIPromptExecutionSettings();
settings.ResponseFormat = typeof(ProofreadingResponse);
IChatCompletionService chatCompletionService = kernel.GetRequiredService<IChatCompletionService>();
var proofreadResponse = await chatCompletionService.GetChatMessageContentAsync(chatHistory, executionSettings: settings);
var formattedResponse = JsonSerializer.Deserialize<ProofreadingResponse>(proofreadResponse.Content!.ToString());
Console.WriteLine($"\n\tGrade: {(formattedResponse!.MeetsExpectations ? "Pass" : "Fail")}\n\tExplanation: {formattedResponse.Explanation}\n\tSuggestions: {string.Join("\n\t\t", formattedResponse.Suggestions)}");
if (formattedResponse.MeetsExpectations)
{
await context.EmitEventAsync("DocumentationApproved", data: documentation);
}
else
{
await context.EmitEventAsync("DocumentationRejected", data: new { Explanation = formattedResponse.Explanation, Suggestions = formattedResponse.Suggestions});
}
}
// A class
private class ProofreadingResponse
{
[Description("Specifies if the proposed documentation meets the expected standards for publishing.")]
public bool MeetsExpectations { get; set; }
[Description("An explanation of why the documentation does or does not meet expectations.")]
public string Explanation { get; set; } = "";
[Description("A lis of suggestions, may be empty if there no suggestions for improvement.")]
public List<string> Suggestions { get; set; } = new();
}
}
Langkah baru bernama ProofreadStep telah dibuat. Langkah ini menggunakan LLM untuk menilai dokumentasi yang dihasilkan seperti yang dibahas di atas. Perhatikan bahwa langkah ini secara kondisional memancarkan peristiwa DocumentationApproved atau peristiwa DocumentationRejected berdasarkan respons dari LLM. Dalam kasus DocumentationApproved, acara akan menyertakan dokumentasi yang disetujui sebagai payload dan dalam kasus DocumentationRejected akan menyertakan saran dari penyunting.
# A sample response model for the ProofreadingStep structured output
class ProofreadingResponse(BaseModel):
"""A class to represent the response from the proofreading step."""
meets_expectations: bool = Field(description="Specifies if the proposed docs meets the standards for publishing.")
explanation: str = Field(description="An explanation of why the documentation does or does not meet expectations.")
suggestions: list[str] = Field(description="List of suggestions, empty if there are no suggestions for improvement.")
# A process step to proofread documentation
class ProofreadStep(KernelProcessStep):
@kernel_function
async def proofread_documentation(self, docs: str, context: KernelProcessStepContext, kernel: Kernel) -> None:
print(f"{ProofreadStep.__name__}\n\t Proofreading product documentation...")
system_prompt = """
Your job is to proofread customer facing documentation for a new product from Contoso. You will be provided with
proposed documentation for a product and you must do the following things:
1. Determine if the documentation passes the following criteria:
1. Documentation must use a professional tone.
1. Documentation should be free of spelling or grammar mistakes.
1. Documentation should be free of any offensive or inappropriate language.
1. Documentation should be technically accurate.
2. If the documentation does not pass 1, you must write detailed feedback of the changes that are needed to
improve the documentation.
"""
chat_history = ChatHistory(system_message=system_prompt)
chat_history.add_user_message(docs)
# Use structured output to ensure the response format is easily parsable
chat_service, settings = kernel.select_ai_service(type=ChatCompletionClientBase)
assert isinstance(chat_service, ChatCompletionClientBase) # nosec
assert isinstance(settings, OpenAIChatPromptExecutionSettings) # nosec
settings.response_format = ProofreadingResponse
response = await chat_service.get_chat_message_content(chat_history=chat_history, settings=settings)
formatted_response: ProofreadingResponse = ProofreadingResponse.model_validate_json(response.content)
suggestions_text = "\n\t\t".join(formatted_response.suggestions)
print(
f"\n\tGrade: {'Pass' if formatted_response.meets_expectations else 'Fail'}\n\t"
f"Explanation: {formatted_response.explanation}\n\t"
f"Suggestions: {suggestions_text}"
)
if formatted_response.meets_expectations:
await context.emit_event(process_event="documentation_approved", data=docs)
else:
await context.emit_event(
process_event="documentation_rejected",
data={"explanation": formatted_response.explanation, "suggestions": formatted_response.suggestions},
)
Langkah baru bernama ProofreadStep telah dibuat. Langkah ini menggunakan LLM untuk menilai dokumentasi yang dihasilkan seperti yang dibahas di atas. Perhatikan bahwa langkah ini secara kondisional memancarkan peristiwa documentation_approved atau peristiwa documentation_rejected berdasarkan respons dari LLM. Dalam kasus documentation_approved, acara akan menyertakan dokumentasi yang disetujui sebagai payload dan dalam kasus documentation_rejected akan menyertakan saran dari penyunting.
Memperbarui langkah pembuatan dokumentasi
// Updated process step to generate and edit documentation for a product
public class GenerateDocumentationStep : KernelProcessStep<GeneratedDocumentationState>
{
private GeneratedDocumentationState _state = new();
private string systemPrompt =
"""
Your job is to write high quality and engaging customer facing documentation for a new product from Contoso. You will be provide with information
about the product in the form of internal documentation, specs, and troubleshooting guides and you must use this information and
nothing else to generate the documentation. If suggestions are provided on the documentation you create, take the suggestions into account and
rewrite the documentation. Make sure the product sounds amazing.
""";
override public ValueTask ActivateAsync(KernelProcessStepState<GeneratedDocumentationState> state)
{
this._state = state.State!;
this._state.ChatHistory ??= new ChatHistory(systemPrompt);
return base.ActivateAsync(state);
}
[KernelFunction]
public async Task GenerateDocumentationAsync(Kernel kernel, KernelProcessStepContext context, string productInfo)
{
Console.WriteLine($"{nameof(GenerateDocumentationStep)}:\n\tGenerating documentation for provided productInfo...");
// Add the new product info to the chat history
this._state.ChatHistory!.AddUserMessage($"Product Info:\n\n{productInfo}");
// Get a response from the LLM
IChatCompletionService chatCompletionService = kernel.GetRequiredService<IChatCompletionService>();
var generatedDocumentationResponse = await chatCompletionService.GetChatMessageContentAsync(this._state.ChatHistory!);
await context.EmitEventAsync("DocumentationGenerated", generatedDocumentationResponse.Content!.ToString());
}
[KernelFunction]
public async Task ApplySuggestionsAsync(Kernel kernel, KernelProcessStepContext context, string suggestions)
{
Console.WriteLine($"{nameof(GenerateDocumentationStep)}:\n\tRewriting documentation with provided suggestions...");
// Add the new product info to the chat history
this._state.ChatHistory!.AddUserMessage($"Rewrite the documentation with the following suggestions:\n\n{suggestions}");
// Get a response from the LLM
IChatCompletionService chatCompletionService = kernel.GetRequiredService<IChatCompletionService>();
var generatedDocumentationResponse = await chatCompletionService.GetChatMessageContentAsync(this._state.ChatHistory!);
await context.EmitEventAsync("DocumentationGenerated", generatedDocumentationResponse.Content!.ToString());
}
public class GeneratedDocumentationState
{
public ChatHistory? ChatHistory { get; set; }
}
}
GenerateDocumentationStep telah diperbarui untuk menyertakan sebuah KernelFunction yang baru. Fungsi baru akan digunakan untuk menerapkan perubahan yang disarankan pada dokumentasi jika langkah proofreading kami memerlukannya. Perhatikan bahwa kedua fungsi untuk membuat atau menulis ulang dokumentasi memancarkan peristiwa yang sama bernama DocumentationGenerated menunjukkan bahwa dokumentasi baru tersedia.
# Updated process step to generate and edit documentation for a product
class GenerateDocumentationStep(KernelProcessStep[GeneratedDocumentationState]):
state: GeneratedDocumentationState = Field(default_factory=GeneratedDocumentationState)
system_prompt: ClassVar[str] = """
Your job is to write high quality and engaging customer facing documentation for a new product from Contoso. You will
be provided with information about the product in the form of internal documentation, specs, and troubleshooting guides
and you must use this information and nothing else to generate the documentation. If suggestions are provided on the
documentation you create, take the suggestions into account and rewrite the documentation. Make sure the product
sounds amazing.
"""
async def activate(self, state: KernelProcessStepState[GeneratedDocumentationState]):
self.state = state.state
if self.state.chat_history is None:
self.state.chat_history = ChatHistory(system_message=self.system_prompt)
self.state.chat_history
@kernel_function
async def generate_documentation(
self, context: KernelProcessStepContext, product_info: str, kernel: Kernel
) -> None:
print(f"{GenerateDocumentationStep.__name__}\n\t Generating documentation for provided product_info...")
self.state.chat_history.add_user_message(f"Product Information:\n{product_info}")
chat_service, settings = kernel.select_ai_service(type=ChatCompletionClientBase)
assert isinstance(chat_service, ChatCompletionClientBase) # nosec
response = await chat_service.get_chat_message_content(chat_history=self.state.chat_history, settings=settings)
await context.emit_event(process_event="documentation_generated", data=str(response))
@kernel_function
async def apply_suggestions(self, suggestions: str, context: KernelProcessStepContext, kernel: Kernel) -> None:
print(f"{GenerateDocumentationStep.__name__}\n\t Rewriting documentation with provided suggestions...")
self.state.chat_history.add_user_message(
f"Rewrite the documentation with the following suggestions:\n\n{suggestions}"
)
chat_service, settings = kernel.select_ai_service(type=ChatCompletionClientBase)
assert isinstance(chat_service, ChatCompletionClientBase) # nosec
generated_documentation_response = await chat_service.get_chat_message_content(
chat_history=self.state.chat_history, settings=settings
)
await context.emit_event(process_event="documentation_generated", data=str(generated_documentation_response))
GenerateDocumentationStep telah diperbarui untuk menyertakan sebuah KernelFunction yang baru. Fungsi baru akan digunakan untuk menerapkan perubahan yang disarankan pada dokumentasi jika langkah proofreading kami memerlukannya. Perhatikan bahwa kedua fungsi untuk membuat atau menulis ulang dokumentasi memancarkan peristiwa yang sama bernama documentation_generated menunjukkan bahwa dokumentasi baru tersedia.
Pembaruan alur
// Create the process builder
ProcessBuilder processBuilder = new("DocumentationGeneration");
// Add the steps
var infoGatheringStep = processBuilder.AddStepFromType<GatherProductInfoStep>();
var docsGenerationStep = processBuilder.AddStepFromType<GenerateDocumentationStepV2>();
var docsProofreadStep = processBuilder.AddStepFromType<ProofreadStep>(); // Add new step here
var docsPublishStep = processBuilder.AddStepFromType<PublishDocumentationStep>();
// Orchestrate the events
processBuilder
.OnInputEvent("Start")
.SendEventTo(new(infoGatheringStep));
infoGatheringStep
.OnFunctionResult()
.SendEventTo(new(docsGenerationStep, functionName: "GenerateDocumentation"));
docsGenerationStep
.OnEvent("DocumentationGenerated")
.SendEventTo(new(docsProofreadStep));
docsProofreadStep
.OnEvent("DocumentationRejected")
.SendEventTo(new(docsGenerationStep, functionName: "ApplySuggestions"));
docsProofreadStep
.OnEvent("DocumentationApproved")
.SendEventTo(new(docsPublishStep));
var process = processBuilder.Build();
return process;
Perutean proses kami yang diperbarui sekarang melakukan hal berikut:
- Ketika peristiwa eksternal dengan
id = Startdikirim ke proses, peristiwa ini dan data terkaitnya akan dikirim keinfoGatheringStep. -
infoGatheringStepKetika selesai berjalan, kirim objek yang dikembalikan kedocsGenerationStep. - Ketika selesai
docsGenerationStepberjalan, kirim dokumen yang dihasilkan kedocsProofreadStep. - Ketika
docsProofreadStepmenolak dokumentasi kami dan memberikan saran, kirim saran kembali kedocsGenerationStep. - Akhirnya, ketika
docsProofreadStepmenyetujui dokumentasi kami, kirim objek yang dikembalikan kedocsPublishStep.
# Create the process builder
process_builder = ProcessBuilder(name="DocumentationGeneration")
# Add the steps
info_gathering_step = process_builder.add_step(GatherProductInfoStep)
docs_generation_step = process_builder.add_step(GenerateDocumentationStep)
docs_proofread_step = process_builder.add_step(ProofreadStep) # Add new step here
docs_publish_step = process_builder.add_step(PublishDocumentationStep)
# Orchestrate the events
process_builder.on_input_event("Start").send_event_to(target=info_gathering_step)
info_gathering_step.on_function_result().send_event_to(
target=docs_generation_step, function_name="generate_documentation", parameter_name="product_info"
)
docs_generation_step.on_event("documentation_generated").send_event_to(
target=docs_proofread_step, parameter_name="docs"
)
docs_proofread_step.on_event("documentation_rejected").send_event_to(
target=docs_generation_step,
function_name="apply_suggestions",
parameter_name="suggestions",
)
docs_proofread_step.on_event("documentation_approved").send_event_to(target=docs_publish_step)
Perutean proses kami yang diperbarui sekarang melakukan hal berikut:
- Ketika peristiwa eksternal dengan
id = Startdikirim ke proses, peristiwa ini dan data terkaitnya akan dikirim keinfo_gathering_step. -
info_gathering_stepKetika selesai berjalan, kirim objek yang dikembalikan kedocs_generation_step. - Ketika selesai
docs_generation_stepberjalan, kirim dokumen yang dihasilkan kedocs_proofread_step. - Ketika
docs_proofread_stepmenolak dokumentasi kami dan memberikan saran, kirim saran kembali kedocs_generation_step. - Akhirnya, ketika
docs_proofread_stepmenyetujui dokumentasi kami, kirim objek yang dikembalikan kedocs_publish_step.
Membangun dan menjalankan Proses
Menjalankan proses kami yang diperbarui menunjukkan output berikut di konsol:
GatherProductInfoStep:
Gathering product information for product named Contoso GlowBrew
GenerateDocumentationStep:
Generating documentation for provided productInfo...
ProofreadDocumentationAsync:
Proofreading documentation...
Grade: Fail
Explanation: The proposed documentation has an overly casual tone and uses informal expressions that might not suit all customers. Additionally, some phrases may detract from the professionalism expected in customer-facing documentation. There are minor areas that could benefit from clarity and conciseness.
Suggestions: Adjust the tone to be more professional and less casual; phrases like 'dazzling light show' and 'coffee performing' could be simplified.
Remove informal phrases such as 'who knew coffee could be so... illuminating?'
Consider editing out overly whimsical phrases like 'it's like a warm hug for your nose!' for a more straightforward description.
Clarify the troubleshooting section for better customer understanding; avoid metaphorical language like 'secure that coffee cup when you realize Monday is still a thing.'
GenerateDocumentationStep:
Rewriting documentation with provided suggestions...
ProofreadDocumentationAsync:
Proofreading documentation...
Grade: Fail
Explanation: The documentation generally maintains a professional tone but contains minor phrasing issues that could be improved. There are no spelling or grammar mistakes noted, and it excludes any offensive language. However, the content could be more concise, and some phrases can be streamlined for clarity. Additionally, technical accuracy regarding troubleshooting solutions may require more details for the user's understanding. For example, clarifying how to 'reset the lighting settings through the designated app' would enhance user experience.
Suggestions: Rephrase 'Join us as we elevate your coffee experience to new heights!' to make it more straightforward, such as 'Experience an elevated coffee journey with us.'
In the 'Solution' section for the LED lights malfunction, add specific instructions on how to find and use the 'designated app' for resetting the lighting settings.
Consider simplifying sentences such as 'Meet your new personal barista!' to be more straightforward, for example, 'Introducing your personal barista.'
Ensure clarity in troubleshooting steps by elaborating on what a 'factory reset' entails.
GenerateDocumentationStep:
Rewriting documentation with provided suggestions...
ProofreadDocumentationAsync:
Proofreading documentation...
Grade: Pass
Explanation: The documentation presents a professional tone, contains no spelling or grammar mistakes, is free of offensive language, and is technically accurate regarding the product's features and troubleshooting guidance.
Suggestions:
PublishDocumentationStep:
Publishing product documentation:
# GlowBrew User Documentation
## Product Overview
Introducing GlowBrew-your new partner in coffee brewing that brings together advanced technology and aesthetic appeal. This innovative AI-driven coffee machine not only brews your favorite coffee but also features the industry's leading number of customizable LEDs and programmable light shows.
## Key Features
1. **Luminous Brew Technology**: Transform your morning routine with our customizable LED lights that synchronize with your brewing process, creating the perfect ambiance to start your day.
2. **AI Taste Assistant**: Our intelligent system learns your preferences over time, recommending exciting new brew combinations tailored to your unique taste.
3. **Gourmet Aroma Diffusion**: Experience an enhanced aroma with built-in aroma diffusers that elevate your coffee's scent profile, invigorating your senses before that all-important first sip.
## Troubleshooting
### Issue: LED Lights Malfunctioning
**Solution**:
- Begin by resetting the lighting settings via the designated app. Open the app, navigate to the settings menu, and select "Reset LED Lights."
- Ensure that all LED connections inside the GlowBrew are secure and properly connected.
- If issues persist, you may consider performing a factory reset. To do this, hold down the reset button located on the machine's back panel for 10 seconds while the device is powered on.
We hope you enjoy your GlowBrew experience and that it brings a delightful blend of flavor and brightness to your coffee moments!
GatherProductInfoStep
Gathering product information for Product Name: Contoso GlowBrew
GenerateDocumentationStep
Generating documentation for provided product_info...
ProofreadStep
Proofreading product documentation...
Grade: Pass
Explanation: The GlowBrew AI Coffee Machine User Guide meets all the required criteria for publishing. The document maintains a professional tone throughout, is free from spelling and grammatical errors, contains no offensive or inappropriate content, and appears to be technically accurate in its description of the product features and troubleshooting advice.
Suggestions:
PublishDocumentationStep
Publishing product documentation:
# GlowBrew AI Coffee Machine User Guide
Welcome to the future of coffee making with the GlowBrew AI Coffee Machine! Step into a world where cutting-edge technology meets exquisite taste, creating a coffee experience like no other. Designed for coffee aficionados and tech enthusiasts alike, the GlowBrew promises not just a cup of coffee, but an adventure for your senses.
## Key Features
### Luminous Brew Technology
Illuminate your mornings with the GlowBrew's mesmerizing programmable LED light shows. With an unmatched number of LEDs, the GlowBrew can transform your kitchen ambiance to sync perfectly with each stage of the brewing process. Choose from a spectrum of colors and patterns to set the perfect mood, whether you're winding down with a rich decaf or kick-starting your day with a bold espresso.
### AI Taste Assistant
Expand your coffee horizons with the AI Taste Assistant, your personal barista that learns and evolves with your palate. Over time, GlowBrew adapts to your preferences, suggesting new and exciting brew combinations. Experience a variety of flavors, from single-origin specialties to intricate blend recipes, tailored to your unique taste.
### Gourmet Aroma Diffusion
Enhance your coffee experience with unrivaled aromatic pleasure. The GlowBrew's built-in aroma diffusers release a carefully calibrated scent profile that awakens your senses, heightening anticipation for your first sip. It's not just a coffee machine, it's an indulgent sensory journey.
## Troubleshooting
### LED Lights Malfunctioning
If you experience issues with your LED lights:
1. **Reset the LED Settings**: Use the GlowBrew app to navigate to the lighting settings and perform a reset.
2. **Check LED Connections**: Open the GlowBrew machine and ensure all LED wiring connections are secure.
3. **Perform a Factory Reset**: As a last resort, a full factory reset can resolve persistent issues. Follow the instructions in the user manual to perform this reset safely.
## Experience the Glow
With GlowBrew, every cup of coffee is an art form that combines luminous aesthetics, an intuitive learning AI, and the intoxicating allure of rich aromas. Make each morning magical and every break a celebration with the GlowBrew AI Coffee Machine. Brew brilliantly, taste innovatively, and glow endlessly.
For more support, explore our comprehensive FAQ section or contact our dedicated customer service team.
Apa Selanjutnya?
Proses kami sekarang menghasilkan dokumentasi yang memenuhi standar yang ditentukan dengan andal. Ini bagus, tetapi sebelum kami menerbitkan dokumentasi kami secara publik, kami benar-benar harus mengharuskan manusia untuk meninjau dan menyetujui. Ayo kita lakukan selanjutnya.