Condividi tramite


Clausola PIVOT

Si applica a: segno di spunta sì Databricks SQL segno di spunta sì Databricks Runtime

Trasforma le righe del table_reference ruotando valori univoci di un elenco di colonne specificato in colonne separate.

Sintassi

table_reference PIVOT ( { aggregate_expression [ [ AS ] agg_column_alias ] } [, ...]
    FOR column_list IN ( expression_list ) )

column_list
 { column_name |
   ( column_name [, ...] ) }

expression_list
 { expression [ AS ] [ column_alias ] |
   { ( expression [, ...] ) [ AS ] [ column_alias] } [, ...] ) }

Parametri

  • table_reference

    Identifica l'oggetto dell'operazione PIVOT .

  • aggregate_expression

    Espressione di qualsiasi tipo in cui tutti i riferimenti table_reference a colonne sono argomenti per aggregare le funzioni.

  • agg_column_alias

    Alias facoltativo per il risultato dell'aggregazione. Se non viene specificato alcun alias, PIVOT genera un alias basato su aggregate_expression.

  • column_list

    Set di colonne da ruotare.

  • expression_list

    Esegue il mapping dei valori da column_list a alias di colonna.

    • expression

      Espressione letterale con un tipo che condivide un tipo meno comune con il rispettivo column_nameoggetto .

      Il numero di espressioni in ogni tupla deve corrispondere al numero di column_names in column_list.

    • column_alias

      Alias facoltativo che specifica il nome della colonna generata. Se non viene specificato PIVOT alcun alias genera un alias basato su expressions.

Risultato

Tabella temporanea del formato seguente:

  • Tutte le colonne del set di risultati intermedio table_reference di che non sono state specificate in alcun aggregate_expression oggetto o column_list.

    Queste colonne sono colonne di raggruppamento.

  • Per ogni expression tupla e aggregate_expression combinazione, PIVOT genera una colonna. Il tipo è il tipo di aggregate_expression.

    Se è presente una aggregate_expression sola colonna, la colonna viene denominata usando column_alias. In caso contrario, è denominato column_alias_agg_column_alias.

    Il valore in ogni cella è il risultato dell'utilizzo aggregation_expression di un oggetto FILTER ( WHERE column_list IN (expression, ...).

Esempi

-- A very basic PIVOT
-- Given a table with sales by quarter, return a table that returns sales across quarters per year.
> CREATE TEMP VIEW sales(year, quarter, region, sales) AS
   VALUES (2018, 1, 'east', 100),
          (2018, 2, 'east',  20),
          (2018, 3, 'east',  40),
          (2018, 4, 'east',  40),
          (2019, 1, 'east', 120),
          (2019, 2, 'east', 110),
          (2019, 3, 'east',  80),
          (2019, 4, 'east',  60),
          (2018, 1, 'west', 105),
          (2018, 2, 'west',  25),
          (2018, 3, 'west',  45),
          (2018, 4, 'west',  45),
          (2019, 1, 'west', 125),
          (2019, 2, 'west', 115),
          (2019, 3, 'west',  85),
          (2019, 4, 'west',  65);

> SELECT year, region, q1, q2, q3, q4
  FROM sales
  PIVOT (sum(sales) AS sales
    FOR quarter
    IN (1 AS q1, 2 AS q2, 3 AS q3, 4 AS q4));
 2018  east  100  20  40  40
 2019  east  120  110  80  60
 2018  west  105  25  45  45
 2019  west  125  115  85  65

-- The same query written without PIVOT
> SELECT year, region,
         sum(sales) FILTER(WHERE quarter = 1) AS q1,
         sum(sales) FILTER(WHERE quarter = 2) AS q2,
         sum(sales) FILTER(WHERE quarter = 3) AS q2,
         sum(sales) FILTER(WHERE quarter = 4) AS q4
  FROM sales
  GROUP BY year, region;
 2018  east  100  20  40  40
 2019  east  120  110  80  60
 2018  west  105  25  45  45
 2019  west  125  115  85  65

-- Also PIVOT on region
> SELECT year, q1_east, q1_west, q2_east, q2_west, q3_east, q3_west, q4_east, q4_west
    FROM sales
    PIVOT (sum(sales) AS sales
      FOR (quarter, region)
      IN ((1, 'east') AS q1_east, (1, 'west') AS q1_west, (2, 'east') AS q2_east, (2, 'west') AS q2_west,
          (3, 'east') AS q3_east, (3, 'west') AS q3_west, (4, 'east') AS q4_east, (4, 'west') AS q4_west));
 2018  100  105  20  25  40  45  40  45
 2019  120  125  110  115  80  85  60  65

-- The same query written without PIVOT
> SELECT year,
    sum(sales) FILTER(WHERE (quarter, region) IN ((1, 'east'))) AS q1_east,
    sum(sales) FILTER(WHERE (quarter, region) IN ((1, 'west'))) AS q1_west,
    sum(sales) FILTER(WHERE (quarter, region) IN ((2, 'east'))) AS q2_east,
    sum(sales) FILTER(WHERE (quarter, region) IN ((2, 'west'))) AS q2_west,
    sum(sales) FILTER(WHERE (quarter, region) IN ((3, 'east'))) AS q3_east,
    sum(sales) FILTER(WHERE (quarter, region) IN ((3, 'west'))) AS q3_west,
    sum(sales) FILTER(WHERE (quarter, region) IN ((4, 'east'))) AS q4_east,
    sum(sales) FILTER(WHERE (quarter, region) IN ((4, 'west'))) AS q4_west
    FROM sales
    GROUP BY year, region;
 2018  100  105  20  25  40  45  40  45
 2019  120  125  110  115  80  85  60  65

-- To aggregate across regions the column must be removed from the input.
> SELECT year, q1, q2, q3, q4
  FROM (SELECT year, quarter, sales FROM sales) AS s
  PIVOT (sum(sales) AS sales
    FOR quarter
    IN (1 AS q1, 2 AS q2, 3 AS q3, 4 AS q4));
  2018  205  45  85  85
  2019  245  225  165  125

-- The same query without PIVOT
> SELECT year,
    sum(sales) FILTER(WHERE quarter = 1) AS q1,
    sum(sales) FILTER(WHERE quarter = 2) AS q2,
    sum(sales) FILTER(WHERE quarter = 3) AS q3,
    sum(sales) FILTER(WHERE quarter = 4) AS q4
    FROM sales
    GROUP BY year;

-- A PIVOT with multiple aggregations
> SELECT year, q1_total, q1_avg, q2_total, q2_avg, q3_total, q3_avg, q4_total, q4_avg
    FROM (SELECT year, quarter, sales FROM sales) AS s
    PIVOT (sum(sales) AS total, avg(sales) AS avg
      FOR quarter
      IN (1 AS q1, 2 AS q2, 3 AS q3, 4 AS q4));
 2018  205  102.5  45  22.5  85  42.5  85  42.5
 2019  245  122.5  225  112.5  165  82.5  125  62.5

-- The same query without PIVOT
> SELECT year,
         sum(sales) FILTER(WHERE quarter = 1) AS q1_total,
         avg(sales) FILTER(WHERE quarter = 1) AS q1_avg,
         sum(sales) FILTER(WHERE quarter = 2) AS q2_total,
         avg(sales) FILTER(WHERE quarter = 2) AS q2_avg,
         sum(sales) FILTER(WHERE quarter = 3) AS q3_total,
         avg(sales) FILTER(WHERE quarter = 3) AS q3_avg,
         sum(sales) FILTER(WHERE quarter = 4) AS q4_total,
         avg(sales) FILTER(WHERE quarter = 4) AS q4_avg
    FROM sales
    GROUP BY year;

> CREATE TEMP VIEW person (id, name, age, class, address) AS
    VALUES (100, 'John', 30, 1, 'Street 1'),
           (200, 'Mary', NULL, 1, 'Street 2'),
           (300, 'Mike', 80, 3, 'Street 3'),
           (400, 'Dan', 50, 4, 'Street 4');
 2018  205  102.5  45  22.5  85  42.5  85  42.5
 2019  245  122.5  225  112.5  165  82.5  125  62.5