StandardTrainersCatalog.LbfgsMaximumEntropy Metodo
Definizione
Importante
Alcune informazioni sono relative alla release non definitiva del prodotto, che potrebbe subire modifiche significative prima della release definitiva. Microsoft non riconosce alcuna garanzia, espressa o implicita, in merito alle informazioni qui fornite.
Overload
LbfgsMaximumEntropy(MulticlassClassificationCatalog+MulticlassClassificationTrainers, LbfgsMaximumEntropyMulticlassTrainer+Options) |
Creare LbfgsMaximumEntropyMulticlassTrainer con opzioni avanzate, che stimano una destinazione usando un modello di classificazione entropia massima sottoposto a training con il metodo L-BFGS. |
LbfgsMaximumEntropy(MulticlassClassificationCatalog+MulticlassClassificationTrainers, String, String, String, Single, Single, Single, Int32, Boolean) |
Creare LbfgsMaximumEntropyMulticlassTrainer, che stima una destinazione usando un modello di classificazione entropia massima sottoposto a training con il metodo L-BFGS. |
LbfgsMaximumEntropy(MulticlassClassificationCatalog+MulticlassClassificationTrainers, LbfgsMaximumEntropyMulticlassTrainer+Options)
Creare LbfgsMaximumEntropyMulticlassTrainer con opzioni avanzate, che stimano una destinazione usando un modello di classificazione entropia massima sottoposto a training con il metodo L-BFGS.
public static Microsoft.ML.Trainers.LbfgsMaximumEntropyMulticlassTrainer LbfgsMaximumEntropy (this Microsoft.ML.MulticlassClassificationCatalog.MulticlassClassificationTrainers catalog, Microsoft.ML.Trainers.LbfgsMaximumEntropyMulticlassTrainer.Options options);
static member LbfgsMaximumEntropy : Microsoft.ML.MulticlassClassificationCatalog.MulticlassClassificationTrainers * Microsoft.ML.Trainers.LbfgsMaximumEntropyMulticlassTrainer.Options -> Microsoft.ML.Trainers.LbfgsMaximumEntropyMulticlassTrainer
<Extension()>
Public Function LbfgsMaximumEntropy (catalog As MulticlassClassificationCatalog.MulticlassClassificationTrainers, options As LbfgsMaximumEntropyMulticlassTrainer.Options) As LbfgsMaximumEntropyMulticlassTrainer
Parametri
Argomenti avanzati per l'algoritmo.
Restituisce
Esempio
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;
namespace Samples.Dynamic.Trainers.MulticlassClassification
{
public static class LbfgsMaximumEntropyWithOptions
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define trainer options.
var options = new LbfgsMaximumEntropyMulticlassTrainer.Options
{
HistorySize = 50,
L1Regularization = 0.1f,
NumberOfThreads = 1
};
// Define the trainer.
var pipeline =
// Convert the string labels into key types.
mlContext.Transforms.Conversion.MapValueToKey("Label")
// Apply LbfgsMaximumEntropy multiclass trainer.
.Append(mlContext.MulticlassClassification.Trainers
.LbfgsMaximumEntropy(options));
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Look at 5 predictions
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, " +
$"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: 1, Prediction: 1
// Label: 2, Prediction: 2
// Label: 3, Prediction: 2
// Label: 2, Prediction: 2
// Label: 3, Prediction: 3
// Evaluate the overall metrics
var metrics = mlContext.MulticlassClassification
.Evaluate(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Micro Accuracy: 0.91
// Macro Accuracy: 0.91
// Log Loss: 0.22
// Log Loss Reduction: 0.80
// Confusion table
// ||========================
// PREDICTED || 0 | 1 | 2 | Recall
// TRUTH ||========================
// 0 || 147 | 0 | 13 | 0.9188
// 1 || 0 | 165 | 12 | 0.9322
// 2 || 11 | 7 | 145 | 0.8896
// ||========================
// Precision ||0.9304 |0.9593 |0.8529 |
}
// Generates random uniform doubles in [-0.5, 0.5)
// range with labels 1, 2 or 3.
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)(random.NextDouble() - 0.5);
for (int i = 0; i < count; i++)
{
// Generate Labels that are integers 1, 2 or 3
var label = random.Next(1, 4);
yield return new DataPoint
{
Label = (uint)label,
// Create random features that are correlated with the label.
// The feature values are slightly increased by adding a
// constant multiple of label.
Features = Enumerable.Repeat(label, 20)
.Select(x => randomFloat() + label * 0.2f).ToArray()
};
}
}
// Example with label and 20 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public uint Label { get; set; }
[VectorType(20)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public uint Label { get; set; }
// Predicted label from the trainer.
public uint PredictedLabel { get; set; }
}
// Pretty-print MulticlassClassificationMetrics objects.
public static void PrintMetrics(MulticlassClassificationMetrics metrics)
{
Console.WriteLine($"Micro Accuracy: {metrics.MicroAccuracy:F2}");
Console.WriteLine($"Macro Accuracy: {metrics.MacroAccuracy:F2}");
Console.WriteLine($"Log Loss: {metrics.LogLoss:F2}");
Console.WriteLine(
$"Log Loss Reduction: {metrics.LogLossReduction:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}
Si applica a
LbfgsMaximumEntropy(MulticlassClassificationCatalog+MulticlassClassificationTrainers, String, String, String, Single, Single, Single, Int32, Boolean)
Creare LbfgsMaximumEntropyMulticlassTrainer, che stima una destinazione usando un modello di classificazione entropia massima sottoposto a training con il metodo L-BFGS.
public static Microsoft.ML.Trainers.LbfgsMaximumEntropyMulticlassTrainer LbfgsMaximumEntropy (this Microsoft.ML.MulticlassClassificationCatalog.MulticlassClassificationTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", string exampleWeightColumnName = default, float l1Regularization = 1, float l2Regularization = 1, float optimizationTolerance = 1E-07, int historySize = 20, bool enforceNonNegativity = false);
static member LbfgsMaximumEntropy : Microsoft.ML.MulticlassClassificationCatalog.MulticlassClassificationTrainers * string * string * string * single * single * single * int * bool -> Microsoft.ML.Trainers.LbfgsMaximumEntropyMulticlassTrainer
<Extension()>
Public Function LbfgsMaximumEntropy (catalog As MulticlassClassificationCatalog.MulticlassClassificationTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional exampleWeightColumnName As String = Nothing, Optional l1Regularization As Single = 1, Optional l2Regularization As Single = 1, Optional optimizationTolerance As Single = 1E-07, Optional historySize As Integer = 20, Optional enforceNonNegativity As Boolean = false) As LbfgsMaximumEntropyMulticlassTrainer
Parametri
- labelColumnName
- String
Nome della colonna etichetta. I dati della colonna devono essere KeyDataViewType.
- featureColumnName
- String
Nome della colonna di funzionalità. I dati di colonna devono essere un vettore di dimensioni note di Single.
- exampleWeightColumnName
- String
Nome della colonna di peso di esempio (facoltativo).
- l1Regularization
- Single
Iperparametro di regolarizzazione L1. I valori più elevati tendono a portare a un modello più sparse.
- l2Regularization
- Single
Peso L2 per la regolarizzazione.
- optimizationTolerance
- Single
Soglia per la convergenza dell'utilità di ottimizzazione.
- historySize
- Int32
Dimensioni della memoria per LbfgsMaximumEntropyMulticlassTrainer. Basso=più veloce, meno accurato.
- enforceNonNegativity
- Boolean
Applicare pesi non negativi.
Restituisce
Esempio
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic.Trainers.MulticlassClassification
{
public static class LbfgsMaximumEntropy
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define the trainer.
var pipeline =
// Convert the string labels into key types.
mlContext.Transforms.Conversion
.MapValueToKey(nameof(DataPoint.Label))
// Apply LbfgsMaximumEntropy multiclass trainer.
.Append(mlContext.MulticlassClassification.Trainers
.LbfgsMaximumEntropy());
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Look at 5 predictions
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, " +
$"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: 1, Prediction: 1
// Label: 2, Prediction: 2
// Label: 3, Prediction: 2
// Label: 2, Prediction: 2
// Label: 3, Prediction: 3
// Evaluate the overall metrics
var metrics = mlContext.MulticlassClassification
.Evaluate(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Micro Accuracy: 0.91
// Macro Accuracy: 0.91
// Log Loss: 0.24
// Log Loss Reduction: 0.79
// Confusion table
// ||========================
// PREDICTED || 0 | 1 | 2 | Recall
// TRUTH ||========================
// 0 || 148 | 0 | 12 | 0.9250
// 1 || 0 | 165 | 12 | 0.9322
// 2 || 11 | 7 | 145 | 0.8896
// ||========================
// Precision ||0.9308 |0.9593 |0.8580 |
}
// Generates random uniform doubles in [-0.5, 0.5)
// range with labels 1, 2 or 3.
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)(random.NextDouble() - 0.5);
for (int i = 0; i < count; i++)
{
// Generate Labels that are integers 1, 2 or 3
var label = random.Next(1, 4);
yield return new DataPoint
{
Label = (uint)label,
// Create random features that are correlated with the label.
// The feature values are slightly increased by adding a
// constant multiple of label.
Features = Enumerable.Repeat(label, 20)
.Select(x => randomFloat() + label * 0.2f).ToArray()
};
}
}
// Example with label and 20 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public uint Label { get; set; }
[VectorType(20)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public uint Label { get; set; }
// Predicted label from the trainer.
public uint PredictedLabel { get; set; }
}
// Pretty-print MulticlassClassificationMetrics objects.
public static void PrintMetrics(MulticlassClassificationMetrics metrics)
{
Console.WriteLine($"Micro Accuracy: {metrics.MicroAccuracy:F2}");
Console.WriteLine($"Macro Accuracy: {metrics.MacroAccuracy:F2}");
Console.WriteLine($"Log Loss: {metrics.LogLoss:F2}");
Console.WriteLine(
$"Log Loss Reduction: {metrics.LogLossReduction:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}