Condividi tramite


LbfgsPoissonRegressionTrainer Classe

Definizione

Oggetto IEstimator<TTransformer> per il training di un modello di regressione di Poisson.

public sealed class LbfgsPoissonRegressionTrainer : Microsoft.ML.Trainers.LbfgsTrainerBase<Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer.Options,Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.PoissonRegressionModelParameters>,Microsoft.ML.Trainers.PoissonRegressionModelParameters>
type LbfgsPoissonRegressionTrainer = class
    inherit LbfgsTrainerBase<LbfgsPoissonRegressionTrainer.Options, RegressionPredictionTransformer<PoissonRegressionModelParameters>, PoissonRegressionModelParameters>
Public NotInheritable Class LbfgsPoissonRegressionTrainer
Inherits LbfgsTrainerBase(Of LbfgsPoissonRegressionTrainer.Options, RegressionPredictionTransformer(Of PoissonRegressionModelParameters), PoissonRegressionModelParameters)
Ereditarietà

Commenti

Per creare questo trainer, usare LbfgsPoissonRegression o LbfgsPoissonRegression(Options).

Colonne di input e output

I dati della colonna dell'etichetta di input devono essere Single. I dati delle colonne delle funzionalità di input devono essere un vettore di dimensioni note di Single.

Questo formatore restituisce le colonne seguenti:

Nome colonna di output Tipo di colonna Descrizione
Score Single Punteggio non associato stimato dal modello.

Caratteristiche del trainer

Attività di Machine Learning Regressione
È necessaria la normalizzazione?
È necessaria la memorizzazione nella cache? No
NuGet richiesto oltre a Microsoft.ML Nessuno
Esportabile in ONNX

Dettagli dell'algoritmo di training

La regressione di Poisson è un metodo di regressione con parametri. Si presuppone che il log della media condizionale della variabile dipendente segue una funzione lineare delle variabili dipendenti. Supponendo che la variabile dipendente segue una distribuzione di Poisson, i parametri di regressione possono essere stimati ottimizzando la probabilità delle osservazioni ottenute.

Controllare la sezione Vedere anche i collegamenti agli esempi di utilizzo.

Campi

FeatureColumn

Colonna di funzionalità prevista dal trainer.

(Ereditato da TrainerEstimatorBase<TTransformer,TModel>)
LabelColumn

Colonna etichetta prevista dal trainer. Può essere null, che indica che l'etichetta non viene usata per il training.

(Ereditato da TrainerEstimatorBase<TTransformer,TModel>)
WeightColumn

Colonna di peso prevista dal trainer. Può essere null, che indica che il peso non viene usato per il training.

(Ereditato da TrainerEstimatorBase<TTransformer,TModel>)

Proprietà

Info

Oggetto IEstimator<TTransformer> per il training di un modello di regressione di Poisson.

(Ereditato da LbfgsTrainerBase<TOptions,TTransformer,TModel>)

Metodi

Fit(IDataView, LinearModelParameters)

Continua il training di un oggetto usando un LbfgsPoissonRegressionTrainer oggetto già sottoposto a linearModel training e restituisce un RegressionPredictionTransformer<TModel>oggetto .

Fit(IDataView)

Esegue il training e restituisce un ITransformeroggetto .

(Ereditato da TrainerEstimatorBase<TTransformer,TModel>)
GetOutputSchema(SchemaShape)

Oggetto IEstimator<TTransformer> per il training di un modello di regressione di Poisson.

(Ereditato da TrainerEstimatorBase<TTransformer,TModel>)

Metodi di estensione

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Aggiungere un "checkpoint di memorizzazione nella cache" alla catena di stima. Ciò garantisce che gli estimatori downstream vengano sottoposti a training sui dati memorizzati nella cache. È utile avere un checkpoint di memorizzazione nella cache prima dei training che accettano più passaggi di dati.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Dato un stimatore, restituire un oggetto wrapping che chiamerà un delegato una volta Fit(IDataView) chiamato. Spesso è importante che un stimatore restituisca informazioni su ciò che è stato adatto, che è il motivo per cui il Fit(IDataView) metodo restituisce un oggetto tipizzato in modo specifico, anziché solo un oggetto generale ITransformer. Tuttavia, allo stesso tempo, IEstimator<TTransformer> sono spesso formati in pipeline con molti oggetti, quindi potrebbe essere necessario creare una catena di stima tramite EstimatorChain<TLastTransformer> dove lo stimatore per cui si vuole ottenere il trasformatore è sepolto da qualche parte in questa catena. Per questo scenario, è possibile collegare questo metodo a un delegato che verrà chiamato una volta chiamato fit.

Si applica a

Vedi anche