Condividi tramite


Installare Azure Machine Learning SDK per Python

Questo articolo è una guida per le diverse opzioni di installazione dell'SDK.

Prerequisiti


Installazione predefinita

Usare azureml-core.

pip install azureml-core

Installare quindi tutti gli altri pacchetti necessari per il processo specifico.

Installazione dell'aggiornamento

Suggerimento

È consigliabile mantenere sempre aggiornato azureml-core alla versione più recente.

Aggiornare una versione precedente:

pip install --upgrade azureml-core

Controllare la versione

Verificare la versione dell'SDK:

pip show azureml-core

Per visualizzare tutti i pacchetti nell'ambiente:

pip list

È anche possibile visualizzare la versione dell'SDK in Python, ma questa versione non include la versione secondaria.

import azureml.core
print(azureml.core.VERSION)

Per altre informazioni su come configurare l'ambiente di sviluppo per il servizio Azure Machine Learning, vedere Configurare un ambiente di sviluppo per Azure Machine Learning.

Altri pacchetti azureml

L'SDK contiene molti altri pacchetti facoltativi che è possibile installare. Questi componenti includono le dipendenze che non sono necessarie per tutti i casi d'uso e che quindi non sono incluse nell'installazione predefinita per evitare che le dimensioni dell'ambiente aumentino eccessivamente. Nella tabella seguente vengono descritti i pacchetti , i relativi casi d'uso e il comando per installare, aggiornare e controllare la versione.

Pacchetto aggiuntivo Caso d'uso Installare/Aggiornare/Visualizzare la versione
azureml-automl-core Contiene le classi di Machine Learning automatizzate di base per Azure Machine Learning.
Questo pacchetto viene usato da azureml-train-automl-client e azureml-train-automl-runtime.
pip install azureml-automl-core
pip install --upgrade azureml-automl-core
pip show azureml-automl-core
azureml-accel-models Accelera le reti neurali profonde su FPGA con il servizio Modelli con accelerazione hardware di Azure Machine Learning. pip install azureml-accel-models
pip install --upgrade azureml-accel-models
pip show azureml-accel-models
azureml-train-automl Fornisce le classi per la compilazione e l'esecuzione di esperimenti di Machine Learning automatizzato. Installa anche pacchetti di data science comuni, tra cui pandas, numpye scikit-learn.

Se si sta cercando di inviare esecuzioni di Machine Learning automatizzate in un ambiente di calcolo remoto e non è necessario eseguire ml in locale, è consigliabile usare il thin client, azureml-train-automl-client, pacchetto che fa parte di azureml-sdk.

Per altre informazioni sull'installazione e sull'uso dell'SDK completo automl o del relativo thin client, vedere le indicazioni aggiuntive sui casi d'uso. azureml-train-automl-client

Analogamente allo standard Python, è supportata una versione precedente e una compatibilità con versioni successive, ma solo per il pacchetto completo azureml-train-automl . Ad esempio, se viene eseguito il training di un modello con SDK versione 1.29.0, è possibile inferenza con le versioni sdk comprese tra 1.28.0 e 1.30.0.
Per l'ambiente conda locale:
pip install azureml-train-automl
pip install --upgrade azureml-train-automl pip install show azureml-train-automl

Thin client per il calcolo remoto:
pip install azureml-train-automl-client
pip install --upgrade azureml-train-automl-client
pip install show azureml-train-automl-client
azureml-contrib Installa i pacchetti azureml-contrib-* che includono funzionalità sperimentali o funzionalità di anteprima. pip install azureml-contrib
pip install --upgrade azureml-contrib
pip show azureml-contrib
azureml-datadrift Contiene funzionalità che consentono di rilevare la deriva dei dati di training del modello rispetto ai dati di assegnazione di punteggi. pip install azureml-datadrift
pip install --upgrade azureml-datadrift
pip show azureml-datadrift
azureml-interpret Usato per l'interpretazione del modello, inclusa l'importanza della funzionalità e della classe per i modelli blackbox e whitebox. pip azureml-interpret
pip install --upgrade azureml-interpret
pip show azureml-interpret
azureml-widgets Contiene pacchetti, moduli e classi di base per Azure Machine Learning. pip install azureml-widgets
pip install --upgrade azureml-widgets
pip show azureml-widgets
azureml-contrib-services Fornisce agli script di assegnazione dei punteggi le funzionalità per richiedere l'accesso HTTP non elaborato. pip install azureml-contrib-services
pip install --upgrade azureml-contrib-services
pip show azureml-contrib-services
azureml-tensorboard Fornisce le classi e i metodi per esportare la cronologia di esecuzione dell'esperimento e avviare TensorBoard per la visualizzazione delle prestazioni e della struttura dell'esperimento. pip install azureml-tensorboard
pip install --upgrade azureml-tensorboard
pip show azureml-tensorboard
azureml-mlflow Contiene funzionalità che integrano Azure Machine Learning con MLFlow. pip install azureml-mlflow
pip install --upgrade azureml-mlflow
pip show azureml-mlflow
azureml-automl-runtime Contiene classi di Machine Learning automatizzate per l'esecuzione di esecuzioni in Azure Machine Learning. pip install azureml-automl-runtime
pip install --upgrade azureml-automl-runtime
pip show azureml-automl-runtime
azureml-widgets Contiene funzionalità per visualizzare lo stato di avanzamento delle esecuzioni di training di Machine Learning in Jupyter Notebooks. pip install azureml-widgets
pip install --upgrade azureml-widgets
pip show azureml-widgets
azureml-train-restclients-hyperdrive Contiene le classi necessarie per creare HyperDriveRuns con azureml-train-core. pip install azureml-train-restclients-hyperdrive
pip install --upgrade azureml-train-restclients-hyperdrive
pip show azureml-train-restclients-hyperdrive
azureml-train-core Contiene le classi di stima di base e la classe estimator generica , gli estimator usati nel training di Deep Neural Network (DNN), gli estimator usati nel training Scikit-Learn, nei moduli e nelle classi che supportano l'ottimizzazione degli iperparametri. pip install azureml-core
pip install --upgrade azureml-core
pip show azureml-core
azureml-train-automl-runtime Contiene funzionalità che rappresentano i componenti di base di Machine Learning e runtime automatizzati in Azure Machine Learning. pip install azureml-train-automl-runtime
pip install --upgrade azureml-train-automl-runtime
pip show azureml-train-automl-runtime
azureml-train-automl-client Contiene pacchetti, moduli e classi di base per Azure Machine Learning. pip install azureml-train-automl-client
pip install --upgrade azureml-train-automl-client
pip show azureml-train-automl-client
azureml-telemetry Questo pacchetto viene usato per raccogliere dati di telemetria, ad esempio messaggi di log, metriche, eventi e messaggi di attività. pip install azureml-telemetry
pip install --upgrade azureml-telemetry
pip show azureml-telemetry
azureml-synapse Contiene il comando Magic per gestire la sessione di Synapse e inviare il codice e il widget SparkMonitor per monitorare lo stato del processo Spark, sia per Jupyter che per JupyterLab pip install azureml-synapse
pip install --upgrade azureml-synapse
pip show azureml-synapse
azureml-sdk Il pacchetto Thos viene usato per compilare ed eseguire flussi di lavoro di Machine Learning nel servizio Azure Machine Learning pip install azureml-sdk
pip install --upgrade azureml-sdk
pip show azureml-sdk
azureml-pipeline-steps Contiene passaggi predefiniti che possono essere eseguiti in una pipeline di Azure Machine Learning. pip install azureml-pipeline-steps
pip install --upgrade azureml-pipeline-steps
pip show azureml-pipeline-steps
azureml-pipeline-core Contiene le funzionalità di base per le pipeline di Azure Machine Learning, che sono flussi di lavoro di Machine Learning configurabili. pip install azureml-pipeline-core
pip install --upgrade azureml-pipeline-core
pip show azureml-pipeline-core
azureml-pipeline Questo pacchetto viene usato per compilare, ottimizzare e gestire flussi di lavoro di Machine Learning pip install azureml-pipeline
pip install --upgrade azureml-pipeline
pip show azureml-pipeline
azureml-opendatasets Contiene le funzionalità di base per le pipeline di Azure Machine Learning, che sono flussi di lavoro di Machine Learning configurabili. pip install azureml-opendatasets
pip install --upgrade azureml-opendatasets
pip show azureml-opendatasets
azureml-interpret Contiene funzionalità per l'uso dell'interpretabilità del modello in Azure Machine Learning. pip install azureml-interpret
pip install --upgrade azureml-interpret
pip show azureml-interpret
azureml-defaults Questo pacchetto è un metapacchetto usato internamente da Azure Machine Learning. pip install azureml-defaults
pip install --upgrade azureml-defaults
pip show azureml-defaults
azureml-dataset-runtime Lo scopo di questo pacchetto è coordinare le dipendenze all'interno dei pacchetti AzureML. Questo pacchetto è interno e non deve essere usato direttamente. pip install azureml-dataset-runtime
pip install --upgrade azureml-dataset-runtime
pip show azureml-dataset-runtime
azureml-datadrift Contiene funzionalità che consentono di rilevare la deriva dei dati di training del modello rispetto ai dati di assegnazione di punteggi. pip install azureml-datadrift
pip install --upgrade azureml-datadrift
pip show azureml-datadrift
azureml-contrib-server Questo pacchetto è un servizio HTTP locale usato per esporre un subset delle funzionalità fornite da AzureML SDK alle estensioni vs tools per intelligenza artificiale (VSCode e Visual Studio) pip install azureml-contrib-server
pip install --upgrade azureml-contrib-server
pip show azureml-contrib-server
azureml-contrib-run Questo pacchetto viene usato per contenere il codice di integrazione di AzureML con Mlflow. pip install azureml-core
pip install --upgrade azureml-core
pip show azureml-core
azureml-contrib-reinforcementlearning Contiene funzionalità per la creazione di una destinazione di calcolo Windows in Azure Machine Learning. pip install azureml-contrib-reinforcementlearning
pip install --upgrade azureml-contrib-reinforcementlearning
pip show azureml-contrib-reinforcementlearning
azureml-contrib-pipeline-steps Contiene moduli e classi per i passaggi specializzati della pipeline di Azure Machine Learning e la configurazione associata. pip install azureml-contrib-pipeline-steps
pip install --upgrade azureml-contrib-pipeline-steps
pip show azureml-contrib-pipeline-steps
azureml-contrib-notebook Contiene estensioni per l'uso dei notebook di Jupyter in Azure Machine Learning. pip install azureml-contrib-notebook
pip install --upgrade azureml-contrib-notebook
pip show azureml-contrib-notebook
azureml-contrib-gbdt Questo pacchetto contiene lo strumento di stima LightGBM. pip install azureml-contrib-gbdt
pip install --upgrade azureml-contrib-gbdt
pip show azureml-contrib-gbdt
azureml-contrib-functions Contiene funzionalità per la creazione di pacchetti di modelli di Azure Machine Learning per la distribuzione in Funzioni di Azure. pip install azureml-contrib-functions
pip install --upgrade azureml-contrib-functions
pip show azureml-contrib-functions
azureml-contrib-fairness Questo pacchetto supporta l'uso di dashboard di valutazione dell'equità in Azure Machine Learning Studio pip install azureml-contrib-fairness
pip install --upgrade azureml-contrib-fairness
pip show azureml-contrib-fairness
azureml-contrib-dataset Contiene funzionalità specializzate per l'uso degli oggetti Dataset in Azure Machine Learning. pip install azureml-contrib-dataset
pip install --upgrade azureml-contrib-dataset
pip show azureml-contrib-dataset
azureml-contrib-automl-pipeline-steps Contiene passaggi predefiniti che possono essere eseguiti in una pipeline di Azure Machine Learning. pip install azureml-contrib-automl-pipeline-steps
pip install --upgrade azureml-contrib-automl-pipeline-steps
pip show azureml-contrib-automl-pipeline-steps
azureml-contrib-automl-dnn-vision Questo pacchetto è progettato solo per essere usato dagli script generati dal sistema AutoML. Per eseguire l'installazione in Windows, i pacchetti "torch" e "torchvision" devono essere installati separatamente prima di questo pacchetto. pip install azureml-contrib-automl-dnn-vision
pip install --upgrade azureml-contrib-automl-dnn-vision
pip show azureml-contrib-automl-dnn-vision
azureml-contrib-automl-dnn-forecasting Pacchetto comune dell'estensione dell'interfaccia della riga di comando di Azure ML. Comune in azure-cli-ml e azure-cli-ml-preview. pip install azureml-contrib-automl-dnn-forecasting
pip install --upgrade azureml-contrib-automl-dnn-forecasting
pip show azureml-contrib-automl-dnn-forecasting
azureml-contrib-aisc AzureML Contrib per la destinazione di calcolo azureML per intelligenza artificiale super computer. AISCCompute è un'infrastruttura di calcolo di intelligenza artificiale gestita, che può essere collegata a un'area di lavoro dall'amministratore del cluster. pip install azureml-contrib-aisc
pip install --upgrade azureml-contrib-aisc
pip show azureml-contrib-aisc
azureml-cli-common Pacchetto comune dell'estensione dell'interfaccia della riga di comando di Azure ML. Comune in azure-cli-ml e azure-cli-ml-preview. pip install azureml-cli-common
pip install --upgrade azureml-cli-common
pip show azureml-cli-common
azureml-automl-dnn-nlp Questo pacchetto è progettato solo per essere usato dagli script generati dal sistema AutoML. pip install azureml-automl-dnn-nlp
pip install --upgrade azureml-automl-dnn-nlp
pip show azureml-automl-dnn-nlp
azureml-accel-models Accelerare le reti neurali profonde in FPGA con il servizio Modelli accelerati hardware di Azure ML. pip install azureml-accel-models
pip install --upgrade azureml-accel-models
pip show azureml-accel-models
azureml-inference-server-http Questo pacchetto abilita sviluppo locale, integrazione CI/CD, route server. pip install azureml-inference-server-http
pip install --upgrade azureml-inference-server-http
pip show azureml-inference-server-http
azure-ml-component Questo pacchetto contiene funzionalità per la creazione e la gestione di componenti di Azure Machine Learning che creano e inviano pipeline usando componenti pip install azure-ml-component
pip install --upgrade azure-ml-component
pip show azure-ml-component
azureml-pipeline-wrapper Questo pacchetto contiene funzionalità per la creazione e la gestione di moduli di Azure Machine Learning, creazione e invio di pipeline tramite moduli pip install azureml-pipeline-wrapper
pip install --upgrade azureml-pipeline-wrapper
pip show azureml-pipeline-wrapper
azureml-designer-cv-modules Moduli per pre-elaborare e trasformare immagini, ad esempio ritagliare, riempire o ridimensionare. pip install azureml-designer-cv-modules
pip install --upgrade azureml-designer-cv-modules
pip show azureml-designer-cv-modules
azureml-designer-pytorch-modules Moduli per eseguire il training e l'inferenza dei modelli di classificazione delle immagini in base al framework pytorch. pip install azureml-designer-pytorch-modules
pip install --upgrade azureml-designer-pytorch-modules
pip show azureml-designer-pytorch-modules
azureml-designer-vowpal-wabbit-modules Moduli per eseguire il training e l'inferenza di modelli basati sul framework Vowpal Wabbit. pip install azureml-designer-vowpal-wabbit-modules
pip install --upgrade azureml-designer-vowpal-wabbit-modules
pip show azureml-designer-vowpal-wabbit-modules
azureml-designer-classic-modules Un'ampia gamma di moduli per l'elaborazione dei dati, il training del modello, l'inferenza e la valutazione. pip install azureml-designer-classic-modules
pip install --upgrade azureml-designer-classic-modules
pip show azureml-designer-classic-modules
azureml-designer-recommender-modules Moduli per eseguire il training e i modelli di raccomandazione di inferenza basati su una rete neurale profonda. pip install azureml-designer-recommender-modules
pip install --upgrade azureml-designer-recommender-modules
pip show azureml-designer-recommender-modules
azureml-designer-internal Funzionalità interne fornite per i moduli predefiniti. pip install azureml-designer-internal
pip install --upgrade azureml-designer-internal
pip show azureml-designer-internal
azureml-designer-core Funzionalità di base per la definizione dei tipi di dati, io di dati e le funzioni usate di frequente. pip install azureml-designer-core
pip install --upgrade azureml-designer-core
pip show azureml-designer-core
azureml-designer-datatransform-modules Moduli per trasformare il set di dati, ad esempio applicando operazioni matematiche, query SQL, ritagliando outlier o generando un report delle statistiche. pip install azureml-designer-datatransform-modules
pip install --upgrade azureml-designer-datatransform-modules
pip show azureml-designer-datatransform-modules
azureml-designer-dataio-modules Moduli per caricare i dati nella finestra di progettazione di Azure Machine Learning e scrivere dati nell'archiviazione basata sul cloud. pip install azureml-designer-dataio-modules
pip install --upgrade azureml-designer-dataio-modules
pip show azureml-designer-dataio-modules
azureml-designer-serving Fornire funzionalità per richiamare moduli predefiniti nel servizio di distribuzione. pip install azureml-designer-serving
pip install --upgrade azureml-designer-serving
pip show azureml-designer-serving
azureml-contrib-datadrift Contiene funzionalità per il rilevamento della deriva dei dati per vari set di dati usati in Machine Learning, inclusi set di dati di training e set di dati di assegnazione dei punteggi. pip install azureml-contrib-datadrift
pip install --upgrade azureml-contrib-datadrift
pip show azureml-contrib-datadrift
azureml-contrib-explain-model Contiene funzionalità sperimentali per il pacchetto azureml-explain-model, che offre un'ampia gamma di servizi per l'interpretazione dei modelli di Machine Learning. pip install azureml-contrib-explain-model
pip install --upgrade azureml-contrib-explain-model
pip show azureml-contrib-explain-model
azureml-contrib-opendatasets Questo pacchetto fornisce un set di API per l'uso di set di dati aperti di Azure. pip install azureml-contrib-opendatasets
pip install --upgrade azureml-contrib-opendatasets
pip show azureml-contrib-opendatasets
azureml-train-widgets Contiene widget per Jupyter Notebook per tenere traccia visivamente delle esecuzioni. pip install azureml-train-widgets
pip install --upgrade azureml-train-widgets
pip show azureml-train-widgets

Per altre informazioni sui pacchetti precedenti, vedere AzureML in pypi.

Indicazioni aggiuntive sul caso d'uso

Se il caso d'uso è descritto di seguito, prendere nota delle indicazioni e delle azioni consigliate.

Caso d'uso Indicazioni
uso di automl  Installare l'SDK completoazureml-train-automl in un nuovo ambiente Python a 64 bit. È necessario un nuovo ambiente a 64 bit a causa di una dipendenza dal framework LightGBM . Questo pacchetto installa e aggiunge versioni specifiche dei pacchetti di data science per la compatibilità, che richiede un ambiente pulito.

Il thin client, azureml-train-automl-client, pacchetto non installa pacchetti di data science aggiuntivi o richiede un ambiente Python pulito. È consigliabile azureml-train-automl-client inviare solo esecuzioni di Machine Learning automatizzate a un ambiente di calcolo remoto e non è necessario inviare esecuzioni locali o scaricare il modello in locale.

Una versione precedente e una compatibilità con versioni successive è supportata solo per i modelli sottoposti a training con il pacchetto completo azureml-train-automl . Ad esempio, se viene eseguito il training di un modello con SDK versione 1.29.0, è possibile inferenza con le versioni sdk comprese tra 1.28.0 e 1.30.0.
Uso di Azure Databricks Nell'ambiente Azure Databricks usare le origini di libreria descritte in questa guida per l'installazione dell'SDK. Vedere anche questi suggerimenti per altre informazioni sull'utilizzo di Azure Machine Learning SDK per Python in Azure Databricks.
Uso di Data Science Virtual Machine di Azure Python SDK è preinstallato negli ambienti Azure Data Science Virtual Machine creati dopo il 27 settembre 2018.
Esecuzione di esercitazioni o notebook di Azure Machine Learning Se si usa una versione dell'SDK precedente rispetto a quella indicata nell'esercitazione o nel notebook, è necessario aggiornare l'SDK. Alcune funzionalità nelle esercitazioni e nei notebook possono richiedere pacchetti Python aggiuntivi, ad esempio matplotlib, scikit-learn o pandas. Le istruzioni in ogni esercitazione e notebook indicheranno i pacchetti necessari.

Risoluzione dei problemi

  • Installazione pip: le dipendenze non sono necessariamente coerenti con l'installazione a riga singola:

    Si tratta di una limitazione nota di pip, perché non dispone di un sistema di risoluzione delle dipendenze funzionante quando si installa come singola riga. La prima dipendenza univoca è l'unica che esamina.

    Nel codice azureml-datadrift seguente e azureml-train-automl vengono entrambi installati usando un'installazione pip a riga singola.

      pip install azureml-datadrift, azureml-train-automl
    

    Per questo esempio, si supponga che azureml-datadrift richieda la versione > 1.0 e azureml-train-automl richieda la versione < 1.2. Se la versione più recente di azureml-datadrift è 1.3, entrambi i pacchetti vengono aggiornati alla versione 1.3, indipendentemente dal requisito del azureml-train-automl pacchetto per una versione precedente.

    Per assicurarsi che le versioni appropriate siano installate per i pacchetti, installare usando più righe come nel codice seguente. L'ordine non è un problema, perché pip effettua il downgrade esplicito come parte della chiamata di riga successiva. Vengono quindi applicate le dipendenze della versione appropriate.

       pip install azureml-datadrift
       pip install azureml-train-automl 
    
  • Non è garantito che il pacchetto di spiegazioni venga installato durante l'installazione di azureml-train-automl-client:

    Quando si esegue un'esecuzione automatica remota con la spiegazione del modello abilitata, verrà visualizzato un messaggio di errore "Installare il pacchetto azureml-explain-model per le spiegazioni del modello". Si tratta di un problema noto. Come soluzione alternativa, seguire una delle procedure seguenti:

    1. Installare azureml-explain-model in locale.
        pip install azureml-explain-model
    
    1. Disabilitare completamente la funzionalità di spiegazione passando model_explainability=False nella configurazione di AutoML.
        automl_config = AutoMLConfig(task = 'classification',
                               path = '.',
                               debug_log = 'automated_ml_errors.log',
                               compute_target = compute_target,
                               run_configuration = aml_run_config,
                               featurization = 'auto',
                               model_explainability=False,
                               training_data = prepped_data,
                               label_column_name = 'Survived',
                               **automl_settings)
    
  • Errori Panda: in genere visualizzati durante l'esperimento AutoML:

    Quando si configura manualmente l'ambiente usando pip, è possibile notare errori (in particolare da pandas) a causa dell'installazione di versioni di pacchetti non supportate.

    Ad esempio, ModuleNotFoundError: No module named 'pandas.core.internals.managers'; 'pandas.core.internals' is not a package

    Per evitare tali errori, installare AutoML SDK usando il automl_setup.cmd:

    1. Aprire un prompt di Anaconda e clonare il repository GitHub per un set di notebook di esempio.
    git clone https://github.com/Azure/MachineLearningNotebooks.git
    
    1. passare alla cartella how-to-use-azureml/automated-machine-learning in cui sono stati estratti i notebook di esempio e quindi eseguire:
    automl_setup
    
  • KeyError: 'brand' durante l'esecuzione di AutoML in un cluster di calcolo locale o di Azure Databricks

    Se un nuovo ambiente è stato creato dopo il 10 giugno 2020, usando SDK 1.7.0 o versioni precedenti, il training potrebbe non riuscire con questo errore a causa di un aggiornamento nel pacchetto py-cpuinfo. Gli ambienti creati il 10 giugno 2020 non sono interessati, poiché gli esperimenti vengono eseguiti nel calcolo remoto perché vengono usate immagini di training memorizzate nella cache. Per risolvere questo problema, eseguire uno dei due passaggi seguenti:

    • Aggiornare la versione dell'SDK alla versione 1.8.0 o successiva (in questo modo viene anche effettuato il downgrade di py-cpuinfo alla versione 5.0.0):

      pip install --upgrade azureml-sdk[automl]
      
    • Effettuare il downgrade della versione installata di py-cpuinfo alla versione 5.0.0:

      pip install py-cpuinfo==5.0.0
      
  • Messaggio di errore: Impossibile installare "PyYAML"

    Azure Machine Learning SDK per Python: PyYAML è un distutils progetto installato. Non è pertanto possibile stabilire in modo accurato quali file appartengono a esso in caso di disinstallazione parziale. Per continuare a installare l'SDK, ignorando l'errore, usare:

    pip install --upgrade azureml-sdk[notebooks,automl] --ignore-installed PyYAML
    
  • L'installazione di Azure Machine Learning SDK ha esito negativo con un'eccezione: ModuleNotFoundError: nessun modulo denominato 'errormel' o 'ImportError: No module named xaml.yaml'

    Questo problema si verifica con l'installazione di Azure Machine Learning SDK per Python nella versione più recente pip (>20.1.1) nell'ambiente di base conda per tutte le versioni rilasciate di Azure Machine Learning SDK per Python. Fare riferimento alle soluzioni alternative seguenti:

    • Evitare di installare Python SDK nell'ambiente di base conda, invece di creare l'ambiente conda e installare l'SDK in tale ambiente utente appena creato. Il pip più recente dovrebbe funzionare su quel nuovo ambiente conda.

    • Per la creazione di immagini in Docker, in cui non è possibile passare dall'ambiente di base conda, aggiungere pip<=20.1.1 nel file docker.

    conda install -c r -y conda python=3.8 pip=20.1.1
    

Passaggi successivi

Provare le procedure seguenti per imparare a usare Azure Machine Learning SDK per Python:

  1. Leggere la panoramica di Azure Machine Learnin Python SDK per informazioni sulle classi chiave e sui modelli di progettazione con esempi di codice.
  2. Seguire l'esercitazione introduttiva su Python di Azure Machine Learning per iniziare a creare esperimenti e modelli.