次の方法で共有


Databricks Runtime 10.3 for ML (サポート期間終了)

Note

この Databricks Runtime バージョンのサポートは終了しました。 サポート終了日については、「サポート終了の履歴」を参照してください。 サポートされている Databricks Runtime のすべてのバージョンについては、「Databricks Runtime リリース ノートのバージョンと互換性」を参照してください。

Databricks Runtime 10.3 for Machine Learning では、Databricks Runtime 10.3 (サポート期間終了) に基づく機械学習とデータ サイエンス向けのすぐに使用できる環境が提供されます。 Databricks Runtime ML には、TensorFlow、PyTorch、XGBoost など、多くの一般的な機械学習ライブラリが含まれています。 Databricks Runtime ML には、機械学習パイプラインを自動的にトレーニングするツールである AutoML が含まれています。 また、Databricks Runtime ML では、Horovod を使用した分散型ディープ ラーニング トレーニングもサポートされます。

Databricks Runtime ML クラスターを作成する手順などの詳細については、「Databricks での AI と機械学習」を参照してください。

新機能と機能強化

Databricks Runtime 10.3 ML は Databricks Runtime 10.3 上に構築されています。 Apache Spark MLlib や SparkR など、Databricks Runtime 10.3 の新機能については、Databricks Runtime 10.3 (サポート期間終了) リリース ノートを参照してください。

モザイク オートML の機能強化

Mosaic AutoML に対して、次の機能強化が行われました。

モザイク AutoML で予測用の ARIMA モデルがサポートされるようになりました

Prophet に加えて、AutoML で問題を予測するための ARIMA モデルの作成および評価が行われるようになりました。

データセットから列を除外する

Mosaic AutoML API を使用する場合は、AutoML が計算中に無視する必要がある列を指定できます。 これは、分類と回帰の問題でのみ使用できます。 詳細については、「 Mosaic AutoML Python API リファレンス を参照してください。

モザイク AutoML 実行からアルゴリズム フレームワークを除外する

モデルの開発時に AutoML で考慮すべきではない、scikit-learn などのアルゴリズム フレームワークを指定できます。 詳細については、 Advanced 構成 および Mosaic AutoML Python API リファレンス を参照してください。

max_trials (非推奨)

max_trials パラメーターは非推奨とされており、次の Databricks Runtime ML のメジャー リリースで削除されます。 timeout_minutesを使用して、モザイク AutoML の実行時間を制御します。 また、Databricks Runtime 10.1 ML 以上では、AutoML に早期停止が組み込まれており、検証メトリックが改善されなくなった場合は、モデルのトレーニングとチューニングが停止されます。

Databricks Feature Store の機能強化

ポイントインタイム検索を時系列特徴テーブルに適用できます。 詳しくは、「時系列特徴テーブルを使用したポイントインタイム サポート」をご覧ください。

Databricks Autologging (GA)

Databricks Autologging は、Databricks Runtime 10.3 ML で一般提供されるようになりました。 Databricks Autologging は、Azure Databricks 上の機械学習トレーニング セッションの自動実験追跡を提供する、ノーコード ソリューションです。 Databricks Autologging を使用すると、さまざまな一般的な機械学習ライブラリのモデルをトレーニングするときに、モデル パラメーター、メトリック、ファイル、および系列情報が自動的にキャプチャされます。 トレーニング セッションは、MLflow 追跡の実行として記録されます。 モデル ファイルも追跡されるため、それらを MLflow モデル レジストリに簡単にログし、MLflow モデルの提供を使用してリアルタイム スコアリングのためにデプロイできます。

詳細については、「Databricks Autologging」を参照してください。

システム環境

Databricks Runtime 10.3 ML のシステム環境は、Databricks Runtime 10.3 とは次のように異なります。

ライブラリ

以下のセクションでは、Databricks Runtime 10.3 に含まれているものとは異なる、Databricks Runtime 10.3 ML に含まれるライブラリ一覧を示します。

このセクションの内容は次のとおりです。

最上位層ライブラリ

Databricks Runtime 10.3 ML には、次の最上位層ライブラリが含まれています。

Python ライブラリ

Databricks Runtime 10.3 ML では、Python パッケージ管理に Virtualenv が使用されており、多くの一般的な ML パッケージが含まれています。

以下のセクションで指定されているパッケージに加えて、Databricks Runtime 10.3 ML には次のパッケージも含まれています。

  • hyperopt 0.2.7.db1
  • sparkdl 2.2.0-db5
  • feature_store 0.3.7
  • automl 1.6.0

CPU クラスター上の Python ライブラリ

ライブラリ Version ライブラリ Version ライブラリ Version
absl-py 0.11.0 Antergos Linux 2015.10 (ISO-Rolling) appdirs 1.4.4
argon2-cffi 20.1.0 astor 0.8.1 astunparse 1.6.3
async-generator 1.10 attrs 20.3.0 backcall 0.2.0
bcrypt 3.2.0 bidict 0.21.4 bleach 3.3.0
blis 0.7.4 boto3 1.16.7 botocore 1.19.7
cachetools 4.2.4 catalogue 2.0.6 certifi 2020.12.5
cffi 1.14.5 chardet 4.0.0 クリックし 7.1.2
cloudpickle 1.6.0 cmdstanpy 0.9.68 configparser 5.0.1
convertdate 2.3.2 cryptography 3.4.7 cycler 0.10.0
cymem 2.0.5 Cython 0.29.23 databricks-automl-runtime 0.2.5
databricks-cli 0.16.2 dbl-tempo 0.1.2 dbus-python 1.2.16
decorator 5.0.6 defusedxml 0.7.1 dill 0.3.2
diskcache 5.2.1 distlib 0.3.4 distro-info 0.23ubuntu1
entrypoints 0.3 ephem 4.1.3 facets-overview 1.0.0
fasttext 0.9.2 filelock 3.0.12 Flask 1.1.2
flatbuffers 2.0 fsspec 0.9.0 future 0.18.2
gast 0.4.0 gitdb 4.0.7 GitPython 3.1.12
google-auth 1.22.1 google-auth-oauthlib 0.4.2 google-pasta 0.2.0
grpcio 1.39.0 gunicorn 20.0.4 gviz-api 1.10.0
h5py 3.1.0 hijri-converter 2.2.2 holidays 0.12
horovod 0.23.0 htmlmin 0.1.12 huggingface-hub 0.1.2
idna 2.10 ImageHash 4.2.1 imbalanced-learn 0.8.1
importlib-metadata 3.10.0 ipykernel 5.3.4 ipython 7.22.0
ipython-genutils 0.2.0 ipywidgets 7.6.3 isodate 0.6.0
itsdangerous 1.1.0 jedi 0.17.2 Jinja2 2.11.3
jmespath 0.10.0 joblib 1.0.1 joblibspark 0.3.0
jsonschema 3.2.0 jupyter-client 6.1.12 jupyter-core 4.7.1
jupyterlab-pygments 0.1.2 jupyterlab-widgets 1.0.0 keras 2.7.0
Keras-Preprocessing 1.1.2 kiwisolver 1.3.1 koalas 1.8.2
korean-lunar-calendar 0.2.1 langcodes 3.3.0 libclang 12.0.0
lightgbm 3.3.1 llvmlite 0.38.0 LunarCalendar 0.0.9
Mako 1.1.3 Markdown 3.3.3 MarkupSafe 2.0.1
matplotlib 3.4.2 missingno 0.5.0 mistune 0.8.4
mleap 0.18.1 mlflow-skinny 1.23.0 multimethod 1.6
murmurhash 1.0.5 nbclient 0.5.3 nbconvert 6.0.7
nbformat 5.1.3 nest-asyncio 1.5.1 networkx 2.5
nltk 3.6.1 ノートブック 6.3.0 numba 0.55.0
numpy 1.20.1 oauthlib 3.1.0 opt-einsum 3.3.0
パッケージング 21.3 pandas 1.2.4 pandas-profiling 3.1.0
pandocfilters 1.4.3 paramiko 2.7.2 parso 0.7.0
pathy 0.6.0 patsy 0.5.1 petastorm 0.11.3
pexpect 4.8.0 phik 0.12.0 pickleshare 0.7.5
Pillow 8.2.0 pip 21.0.1 plotly 5.5.0
pmdarima 1.8.4 preshed 3.0.5 prometheus-client 0.10.1
prompt-toolkit 3.0.17 prophet 1.0.1 protobuf 3.17.2
psutil 5.8.0 psycopg2 2.8.5 ptyprocess 0.7.0
pyarrow 4.0.0 pyasn1 0.4.8 pyasn1-modules 0.2.8
pybind11 2.9.0 pycparser 2.20 pydantic 1.8.2
Pygments 2.8.1 PyGObject 3.36.0 PyMeeus 0.5.11
PyNaCl 1.4.0 pyodbc 4.0.30 pyparsing 2.4.7
pyrsistent 0.17.3 pystan 2.19.1.1 python-apt 2.0.0+ubuntu0.20.4.6
python-dateutil 2.8.1 python-editor 1.0.4 python-engineio 4.3.0
python-socketio 5.4.1 pytz 2020.5 PyWavelets 1.1.1
PyYAML 5.4.1 pyzmq 20.0.0 regex 2021.4.4
requests 2.25.1 requests-oauthlib 1.3.0 requests-unixsocket 0.2.0
rsa 4.7.2 s3transfer 0.3.7 sacremoses 0.0.46
scikit-learn 0.24.1 scipy 1.6.2 seaborn 0.11.1
Send2Trash 1.5.0 setuptools 52.0.0 setuptools-git 1.2
shap 0.40.0 simplejson 3.17.2 6 1.15.0
slicer 0.0.7 smart-open 5.2.0 smmap 3.0.5
spacy 3.2.1 spacy-legacy 3.0.8 spacy-loggers 1.0.1
spark-tensorflow-distributor 1.0.0 sqlparse 0.4.1 srsly 2.4.1
ssh-import-id 5.10 statsmodels 0.12.2 tabulate 0.8.7
tangled-up-in-unicode 0.1.0 tenacity 6.2.0 TensorBoard 2.7.0
tensorboard-data-server 0.6.1 tensorboard-plugin-profile 2.5.0 tensorboard-plugin-wit 1.8.1
tensorflow-cpu 2.7.0 tensorflow-estimator 2.7.0 tensorflow-io-gcs-filesystem 0.23.1
termcolor 1.1.0 terminado 0.9.4 testpath 0.4.4
thinc 8.0.12 threadpoolctl 2.1.0 tokenizers 0.10.3
torch 1.10.1+cpu torchvision 0.11.2+cpu tornado 6.1
tqdm 4.59.0 traitlets 5.0.5 transformers 4.15.0
typer 0.3.2 typing-extensions 3.7.4.3 ujson 4.0.2
unattended-upgrades 0.1 urllib3 1.25.11 virtualenv 20.4.1
visions 0.7.4 wasabi 0.8.2 wcwidth 0.2.5
webencodings 0.5.1 websocket-client 0.57.0 Werkzeug 1.0.1
wheel 0.36.2 widgetsnbextension 3.5.1 wrapt 1.12.1
xgboost 1.5.1 zipp 3.4.1

GPU クラスター上の Python ライブラリ

ライブラリ Version ライブラリ Version ライブラリ Version
absl-py 0.11.0 Antergos Linux 2015.10 (ISO-Rolling) appdirs 1.4.4
argon2-cffi 20.1.0 astor 0.8.1 astunparse 1.6.3
async-generator 1.10 attrs 20.3.0 backcall 0.2.0
bcrypt 3.2.0 bidict 0.21.4 bleach 3.3.0
blis 0.7.4 boto3 1.16.7 botocore 1.19.7
cachetools 4.2.4 catalogue 2.0.6 certifi 2020.12.5
cffi 1.14.5 chardet 4.0.0 クリックし 7.1.2
cloudpickle 1.6.0 cmdstanpy 0.9.68 configparser 5.0.1
convertdate 2.3.2 cryptography 3.4.7 cycler 0.10.0
cymem 2.0.5 Cython 0.29.23 databricks-automl-runtime 0.2.5
databricks-cli 0.16.2 dbl-tempo 0.1.2 dbus-python 1.2.16
decorator 5.0.6 defusedxml 0.7.1 dill 0.3.2
diskcache 5.2.1 distlib 0.3.4 distro-info 0.23ubuntu1
entrypoints 0.3 ephem 4.1.3 facets-overview 1.0.0
fasttext 0.9.2 filelock 3.0.12 Flask 1.1.2
flatbuffers 2.0 fsspec 0.9.0 future 0.18.2
gast 0.4.0 gitdb 4.0.7 GitPython 3.1.12
google-auth 1.22.1 google-auth-oauthlib 0.4.2 google-pasta 0.2.0
grpcio 1.39.0 gunicorn 20.0.4 gviz-api 1.10.0
h5py 3.1.0 hijri-converter 2.2.2 holidays 0.12
horovod 0.23.0 htmlmin 0.1.12 huggingface-hub 0.1.2
idna 2.10 ImageHash 4.2.1 imbalanced-learn 0.8.1
importlib-metadata 3.10.0 ipykernel 5.3.4 ipython 7.22.0
ipython-genutils 0.2.0 ipywidgets 7.6.3 isodate 0.6.0
itsdangerous 1.1.0 jedi 0.17.2 Jinja2 2.11.3
jmespath 0.10.0 joblib 1.0.1 joblibspark 0.3.0
jsonschema 3.2.0 jupyter-client 6.1.12 jupyter-core 4.7.1
jupyterlab-pygments 0.1.2 jupyterlab-widgets 1.0.0 keras 2.7.0
Keras-Preprocessing 1.1.2 kiwisolver 1.3.1 koalas 1.8.2
korean-lunar-calendar 0.2.1 langcodes 3.3.0 libclang 12.0.0
lightgbm 3.3.1 llvmlite 0.38.0 LunarCalendar 0.0.9
Mako 1.1.3 Markdown 3.3.3 MarkupSafe 2.0.1
matplotlib 3.4.2 missingno 0.5.0 mistune 0.8.4
mleap 0.18.1 mlflow-skinny 1.23.0 multimethod 1.6
murmurhash 1.0.5 nbclient 0.5.3 nbconvert 6.0.7
nbformat 5.1.3 nest-asyncio 1.5.1 networkx 2.5
nltk 3.6.1 ノートブック 6.3.0 numba 0.55.0
numpy 1.20.1 oauthlib 3.1.0 opt-einsum 3.3.0
パッケージング 21.3 pandas 1.2.4 pandas-profiling 3.1.0
pandocfilters 1.4.3 paramiko 2.7.2 parso 0.7.0
pathy 0.6.0 patsy 0.5.1 petastorm 0.11.3
pexpect 4.8.0 phik 0.12.0 pickleshare 0.7.5
Pillow 8.2.0 pip 21.0.1 plotly 5.5.0
pmdarima 1.8.4 preshed 3.0.5 prompt-toolkit 3.0.17
prophet 1.0.1 protobuf 3.17.2 psutil 5.8.0
psycopg2 2.8.5 ptyprocess 0.7.0 pyarrow 4.0.0
pyasn1 0.4.8 pyasn1-modules 0.2.8 pybind11 2.9.0
pycparser 2.20 pydantic 1.8.2 Pygments 2.8.1
PyGObject 3.36.0 PyMeeus 0.5.11 PyNaCl 1.4.0
pyodbc 4.0.30 pyparsing 2.4.7 pyrsistent 0.17.3
pystan 2.19.1.1 python-apt 2.0.0+ubuntu0.20.4.6 python-dateutil 2.8.1
python-editor 1.0.4 python-engineio 4.3.0 python-socketio 5.4.1
pytz 2020.5 PyWavelets 1.1.1 PyYAML 5.4.1
pyzmq 20.0.0 regex 2021.4.4 requests 2.25.1
requests-oauthlib 1.3.0 requests-unixsocket 0.2.0 rsa 4.7.2
s3transfer 0.3.7 sacremoses 0.0.46 scikit-learn 0.24.1
scipy 1.6.2 seaborn 0.11.1 Send2Trash 1.5.0
setuptools 52.0.0 setuptools-git 1.2 shap 0.40.0
simplejson 3.17.2 6 1.15.0 slicer 0.0.7
smart-open 5.2.0 smmap 3.0.5 spacy 3.2.1
spacy-legacy 3.0.8 spacy-loggers 1.0.1 spark-tensorflow-distributor 1.0.0
sqlparse 0.4.1 srsly 2.4.1 ssh-import-id 5.10
statsmodels 0.12.2 tabulate 0.8.7 tangled-up-in-unicode 0.1.0
tenacity 6.2.0 TensorBoard 2.7.0 tensorboard-data-server 0.6.1
tensorboard-plugin-profile 2.5.0 tensorboard-plugin-wit 1.8.1 tensorflow 2.7.0
tensorflow-estimator 2.7.0 tensorflow-io-gcs-filesystem 0.23.1 termcolor 1.1.0
terminado 0.9.4 testpath 0.4.4 thinc 8.0.12
threadpoolctl 2.1.0 tokenizers 0.10.3 torch 1.10.1+cu111
torchvision 0.11.2+cu111 tornado 6.1 tqdm 4.59.0
traitlets 5.0.5 transformers 4.15.0 typer 0.3.2
typing-extensions 3.7.4.3 ujson 4.0.2 unattended-upgrades 0.1
urllib3 1.25.11 virtualenv 20.4.1 visions 0.7.4
wasabi 0.8.2 wcwidth 0.2.5 webencodings 0.5.1
websocket-client 0.57.0 Werkzeug 1.0.1 wheel 0.36.2
widgetsnbextension 3.5.1 wrapt 1.12.1 xgboost 1.5.1
zipp 3.4.1

Python モジュールを含む Spark パッケージ

Spark パッケージ Python モジュール Version
graphframes graphframes 0.8.2-db1-spark3.2

R ライブラリ

R ライブラリは、Databricks Runtime 10.3 の R ライブラリと同じです。

Java と Scala のライブラリ (Scala 2.12 クラスター)

Databricks Runtime 10.3 ML には、Databricks Runtime 10.3 の Java および Scala ライブラリに加え、次の JAR が含まれています。

CPU クラスター

グループ ID 成果物 ID Version
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.18.1-23eb1ef
ml.dmlc xgboost4j-spark_2.12 1.5.1
ml.dmlc xgboost4j_2.12 1.5.1
org.graphframes graphframes_2.12 0.8.2-db1-spark3.2
org.mlflow mlflow-client 1.23.0
org.mlflow mlflow-spark 1.23.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0

GPU クラスター

グループ ID 成果物 ID Version
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.18.1-23eb1ef
ml.dmlc xgboost4j-spark_2.12 1.5.1
ml.dmlc xgboost4j_2.12 1.5.1
org.graphframes graphframes_2.12 0.8.2-db1-spark3.2
org.mlflow mlflow-client 1.23.0
org.mlflow mlflow-spark 1.23.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0