次の方法で共有


Databricks Runtime 6.3 for ML (サポート期間終了)

Note

この Databricks Runtime バージョンのサポートは終了しました。 サポート終了日については、「サポート終了の履歴」を参照してください。 サポートされている Databricks Runtime のすべてのバージョンについては、「Databricks Runtime リリース ノートのバージョンと互換性」を参照してください。

Databricks は、2020 年 1 月にこのバージョンをリリースしました。

Databricks Runtime 6.3 for Machine Learning では、Databricks Runtime 6.3 (サポート期間終了) に基づいて、機械学習とデータ サイエンス用にすぐに利用できる環境が用意されています。 Databricks Runtime ML には、TensorFlow、PyTorch、Keras、XGBoost など、多くの一般的な機械学習ライブラリが含まれています。 また、Horovod を使用した分散型ディープ ラーニング トレーニングもサポートされています。

Databricks Runtime ML クラスターを作成する手順などの詳細については、「Databricks での AI と Machine Learning」を参照してください。

新機能

Databricks Runtime 6.3 ML は Databricks Runtime 6.3 上に構築されています。 Databricks Runtime 6.3 の新機能については、「Databricks Runtime 6.3 (サポート期間終了)」のリリース ノートをご覧ください。

機能強化

機械学習ライブラリのアップグレード

  • PyTorch: 1.3.0 から 1.3.1
  • torchvision: 0.4.1 から0.4.2 - 最適化されたビデオ リーダー バックエンドを含む
  • MLflow: 1.4.0 から 1.5.0
    • LightGBM、XGBoost、Gluon の各フレーバーのサポートが含まれます。
    • Databricks Runtime ML クラスターに対して MLflow プロジェクトを実行できなかったバグを修正しました。
    • 詳細については、MLflow 1.5.0 のリリースを参照してください。
  • Hyperopt: 0.2.1 から 0.2.2 - 更新プログラムには以下が含まれます。
    • アルゴリズムが hp.choice および hp.randint で正しく機能しない ATPE (Adaptiv-TPE) のバグを修正しました。

    • tqdm (進行状況を報告するための Python モジュール) を使用する際のバグをいくつか修正しました。 たとえば、並列 fmin() の実行時に、進行状況バーが正しくされないことがありました。

    • 実行時間の長い試用版の Spark タスクの再試行について警告が表示されるようになりました。 再試行が有効になっていて、試用版の実行が遅い場合に、このメッセージが出力されます。

      SparkTrials found that the Spark conf 'spark.task.maxFailures' is set to 4, which will make trials re-run automatically if they fail.
      If failures can occur from bad hyperparameter settings, or if trials are very long-running, then retries may not be a good idea.
      Consider setting spark.conf.set('spark.task.maxFailures', '1') to prevent retries.
      
    • その他の小さな修正プログラム。 詳細については、Hyperopt 0.2.2 のリリースを参照してください。

バグの修正

マルチ GPU ノードを持つ GPU クラスターで頻繁に発生するクラスター メトリックの欠落を引き起こす問題を修正しました。

システム環境

Databricks Runtime 6.3 ML のシステム環境は、Databricks Runtime 6.3 とは次のように異なります。

ライブラリ

以下のセクションでは、Databricks Runtime 6.3 に含まれているものとは異なる、Databricks Runtime 6.3 ML に含まれるライブラリ一覧を示します。

このセクションの内容は次のとおりです。

最上位層ライブラリ

Databricks Runtime 6.3 ML には、次の最上位層ライブラリが含まれています。

Python ライブラリ

Databricks Runtime 6.3 ML は、Python パッケージ管理に Conda を使用し、多くの一般的な MLパッケージが含まれています。 次のセクションでは、Databricks Runtime 6.3 ML の Conda 環境について説明します。

CPU クラスター上の Python

name: databricks-ml
channels:
  - Databricks
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - _py-xgboost-mutex=2.0=cpu_0
  - _tflow_select=2.3.0=mkl
  - absl-py=0.8.1=py37_0
  - asn1crypto=0.24.0=py37_0
  - astor=0.8.0=py37_0
  - backcall=0.1.0=py37_0
  - backports=1.0=py_2
  - bcrypt=3.1.7=py37h7b6447c_0
  - blas=1.0=mkl
  - boto=2.49.0=py37_0
  - boto3=1.9.162=py_0
  - botocore=1.12.163=py_0
  - c-ares=1.15.0=h7b6447c_1001
  - ca-certificates=2019.1.23=0
  - certifi=2019.3.9=py37_0
  - cffi=1.12.2=py37h2e261b9_1
  - chardet=3.0.4=py37_1003
  - click=7.0=py_0
  - cloudpickle=0.8.0=py37_0
  - colorama=0.4.1=py_0
  - configparser=3.7.4=py37_0
  - cpuonly=1.0=0
  - cryptography=2.6.1=py37h1ba5d50_0
  - cycler=0.10.0=py37_0
  - cython=0.29.6=py37he6710b0_0
  - decorator=4.4.0=py37_1
  - docutils=0.14=py37_0
  - entrypoints=0.3=py37_0
  - et_xmlfile=1.0.1=py37_0
  - flask=1.0.2=py37_1
  - freetype=2.9.1=h8a8886c_1
  - future=0.17.1=py37_0
  - gast=0.2.2=py37_0
  - gitdb2=2.0.6=py_0
  - gitpython=2.1.11=py37_0
  - google-pasta=0.1.8=py_0
  - grpcio=1.16.1=py37hf8bcb03_1
  - gunicorn=19.9.0=py37_0
  - h5py=2.9.0=py37h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - html5lib=1.0.1=py_0
  - icu=58.2=h9c2bf20_1
  - idna=2.8=py37_0
  - intel-openmp=2019.3=199
  - ipykernel=5.1.0=py37h39e3cac_0
  - ipython=7.4.0=py37h39e3cac_0
  - ipython_genutils=0.2.0=py37_0
  - itsdangerous=1.1.0=py_0
  - jdcal=1.4=py37_0
  - jedi=0.13.3=py37_0
  - jinja2=2.10=py37_0
  - jmespath=0.9.4=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=5.2.4=py37_0
  - jupyter_core=4.4.0=py37_0
  - keras-applications=1.0.8=py_0
  - keras-preprocessing=1.1.0=py_1
  - kiwisolver=1.0.1=py37hf484d3e_0
  - krb5=1.16.1=h173b8e3_7
  - libedit=3.1.20181209=hc058e9b_0
  - libffi=3.2.1=hd88cf55_4
  - libgcc-ng=8.2.0=hdf63c60_1
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.36=hbc83047_0
  - libpq=11.2=h20c2e04_0
  - libprotobuf=3.11.2=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=8.2.0=hdf63c60_1
  - libtiff=4.0.10=h2733197_2
  - libxgboost=0.90=he6710b0_1
  - libxml2=2.9.9=hea5a465_1
  - libxslt=1.1.33=h7d1a2b0_0
  - llvmlite=0.28.0=py37hd408876_0
  - lxml=4.3.2=py37hefd8a0e_0
  - mako=1.0.10=py_0
  - markdown=3.1.1=py37_0
  - markupsafe=1.1.1=py37h7b6447c_0
  - mkl=2019.3=199
  - mkl_fft=1.0.10=py37ha843d7b_0
  - mkl_random=1.0.2=py37hd81dba3_0
  - ncurses=6.1=he6710b0_1
  - networkx=2.2=py37_1
  - ninja=1.9.0=py37hfd86e86_0
  - nose=1.3.7=py37_2
  - numba=0.43.1=py37h962f231_0
  - numpy=1.16.2=py37h7e9f1db_0
  - numpy-base=1.16.2=py37hde5b4d6_0
  - olefile=0.46=py_0
  - openpyxl=2.6.1=py37_1
  - openssl=1.1.1b=h7b6447c_1
  - opt_einsum=3.1.0=py_0
  - pandas=0.24.2=py37he6710b0_0
  - paramiko=2.4.2=py37_0
  - parso=0.3.4=py37_0
  - pathlib2=2.3.3=py37_0
  - patsy=0.5.1=py37_0
  - pexpect=4.6.0=py37_0
  - pickleshare=0.7.5=py37_0
  - pillow=5.4.1=py37h34e0f95_0
  - pip=19.0.3=py37_0
  - ply=3.11=py37_0
  - prompt_toolkit=2.0.9=py37_0
  - protobuf=3.11.2=py37he6710b0_0
  - psutil=5.6.1=py37h7b6447c_0
  - psycopg2=2.7.6.1=py37h1ba5d50_0
  - ptyprocess=0.6.0=py37_0
  - py-xgboost=0.90=py37he6710b0_1
  - py-xgboost-cpu=0.90=py37_1
  - pyasn1=0.4.8=py_0
  - pycparser=2.19=py_0
  - pygments=2.3.1=py37_0
  - pymongo=3.8.0=py37he6710b0_1
  - pynacl=1.3.0=py37h7b6447c_0
  - pyopenssl=19.0.0=py37_0
  - pyparsing=2.3.1=py37_0
  - pysocks=1.6.8=py37_0
  - python=3.7.3=h0371630_0
  - python-dateutil=2.8.0=py37_0
  - python-editor=1.0.4=py_0
  - pytorch=1.3.1=py3.7_cpu_0
  - pytz=2018.9=py37_0
  - pyyaml=5.1=py37h7b6447c_0
  - pyzmq=18.0.0=py37he6710b0_0
  - readline=7.0=h7b6447c_5
  - requests=2.21.0=py37_0
  - s3transfer=0.2.1=py37_0
  - scikit-learn=0.20.3=py37hd81dba3_0
  - scipy=1.2.1=py37h7c811a0_0
  - setuptools=40.8.0=py37_0
  - simplejson=3.16.0=py37h14c3975_0
  - singledispatch=3.4.0.3=py37_0
  - six=1.12.0=py37_0
  - smmap2=2.0.5=py_0
  - sqlite=3.27.2=h7b6447c_0
  - sqlparse=0.3.0=py_0
  - statsmodels=0.9.0=py37h035aef0_0
  - tabulate=0.8.3=py37_0
  - tensorboard=1.15.0+db2=pyhb230dea_0
  - tensorflow=1.15.0+db2=mkl_py37hc5fbf04_0
  - tensorflow-base=1.15.0+db2=mkl_py37h2ae1e84_0
  - tensorflow-estimator=1.15.1+db2=pyh2649769_0
  - tensorflow-mkl=1.15.0+db2=h4fcabd2_0
  - termcolor=1.1.0=py37_1
  - tk=8.6.8=hbc83047_0
  - torchvision=0.4.2=py37_cpu
  - tornado=6.0.2=py37h7b6447c_0
  - tqdm=4.31.1=py37_1
  - traitlets=4.3.2=py37_0
  - urllib3=1.24.1=py37_0
  - virtualenv=16.0.0=py37_0
  - wcwidth=0.1.7=py37_0
  - webencodings=0.5.1=py37_1
  - websocket-client=0.56.0=py37_0
  - werkzeug=0.14.1=py37_0
  - wheel=0.33.1=py37_0
  - wrapt=1.11.1=py37h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - yaml=0.1.7=had09818_2
  - zeromq=4.3.1=he6710b0_3
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.3.7=h0b5b093_0
  - pip:
    - argparse==1.4.0
    - databricks-cli==0.9.1
    - deprecated==1.2.7
    - docker==4.1.0
    - fusepy==2.0.4
    - gorilla==0.3.0
    - horovod==0.18.2
    - hyperopt==0.2.2.db1
    - keras==2.2.5
    - matplotlib==3.0.3
    - mleap==0.8.1
    - mlflow==1.5.0
    - nose-exclude==0.5.0
    - pyarrow==0.13.0
    - querystring-parser==1.2.4
    - seaborn==0.9.0
    - tensorboardx==1.9
prefix: /databricks/conda/envs/databricks-ml

GPU クラスター上の Python

name: databricks-ml-gpu
channels:
  - Databricks
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - _py-xgboost-mutex=1.0=gpu_0
  - _tflow_select=2.1.0=gpu
  - absl-py=0.8.1=py37_0
  - asn1crypto=0.24.0=py37_0
  - astor=0.8.0=py37_0
  - backcall=0.1.0=py37_0
  - backports=1.0=py_2
  - bcrypt=3.1.7=py37h7b6447c_0
  - blas=1.0=mkl
  - boto=2.49.0=py37_0
  - boto3=1.9.162=py_0
  - botocore=1.12.163=py_0
  - c-ares=1.15.0=h7b6447c_1001
  - ca-certificates=2019.1.23=0
  - certifi=2019.3.9=py37_0
  - cffi=1.12.2=py37h2e261b9_1
  - chardet=3.0.4=py37_1003
  - click=7.0=py_0
  - cloudpickle=0.8.0=py37_0
  - colorama=0.4.1=py_0
  - configparser=3.7.4=py37_0
  - cryptography=2.6.1=py37h1ba5d50_0
  - cudatoolkit=10.0.130=0
  - cudnn=7.6.4=cuda10.0_0
  - cupti=10.0.130=0
  - cycler=0.10.0=py37_0
  - cython=0.29.6=py37he6710b0_0
  - decorator=4.4.0=py37_1
  - docutils=0.14=py37_0
  - entrypoints=0.3=py37_0
  - et_xmlfile=1.0.1=py37_0
  - flask=1.0.2=py37_1
  - freetype=2.9.1=h8a8886c_1
  - future=0.17.1=py37_0
  - gast=0.2.2=py37_0
  - gitdb2=2.0.6=py_0
  - gitpython=2.1.11=py37_0
  - google-pasta=0.1.8=py_0
  - grpcio=1.16.1=py37hf8bcb03_1
  - gunicorn=19.9.0=py37_0
  - h5py=2.9.0=py37h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - html5lib=1.0.1=py_0
  - icu=58.2=h9c2bf20_1
  - idna=2.8=py37_0
  - intel-openmp=2019.3=199
  - ipykernel=5.1.0=py37h39e3cac_0
  - ipython=7.4.0=py37h39e3cac_0
  - ipython_genutils=0.2.0=py37_0
  - itsdangerous=1.1.0=py_0
  - jdcal=1.4=py37_0
  - jedi=0.13.3=py37_0
  - jinja2=2.10=py37_0
  - jmespath=0.9.4=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=5.2.4=py37_0
  - jupyter_core=4.4.0=py37_0
  - keras-applications=1.0.8=py_0
  - keras-preprocessing=1.1.0=py_1
  - kiwisolver=1.0.1=py37hf484d3e_0
  - krb5=1.16.1=h173b8e3_7
  - libedit=3.1.20181209=hc058e9b_0
  - libffi=3.2.1=hd88cf55_4
  - libgcc-ng=8.2.0=hdf63c60_1
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.36=hbc83047_0
  - libpq=11.2=h20c2e04_0
  - libprotobuf=3.11.2=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=8.2.0=hdf63c60_1
  - libtiff=4.0.10=h2733197_2
  - libxgboost=0.90=h688424c_0
  - libxml2=2.9.9=hea5a465_1
  - libxslt=1.1.33=h7d1a2b0_0
  - llvmlite=0.28.0=py37hd408876_0
  - lxml=4.3.2=py37hefd8a0e_0
  - mako=1.0.10=py_0
  - markdown=3.1.1=py37_0
  - markupsafe=1.1.1=py37h7b6447c_0
  - mkl=2019.3=199
  - mkl_fft=1.0.10=py37ha843d7b_0
  - mkl_random=1.0.2=py37hd81dba3_0
  - ncurses=6.1=he6710b0_1
  - networkx=2.2=py37_1
  - ninja=1.9.0=py37hfd86e86_0
  - nose=1.3.7=py37_2
  - numba=0.43.1=py37h962f231_0
  - numpy=1.16.2=py37h7e9f1db_0
  - numpy-base=1.16.2=py37hde5b4d6_0
  - olefile=0.46=py_0
  - openpyxl=2.6.1=py37_1
  - openssl=1.1.1b=h7b6447c_1
  - opt_einsum=3.1.0=py_0
  - pandas=0.24.2=py37he6710b0_0
  - paramiko=2.4.2=py37_0
  - parso=0.3.4=py37_0
  - pathlib2=2.3.3=py37_0
  - patsy=0.5.1=py37_0
  - pexpect=4.6.0=py37_0
  - pickleshare=0.7.5=py37_0
  - pillow=5.4.1=py37h34e0f95_0
  - pip=19.0.3=py37_0
  - ply=3.11=py37_0
  - prompt_toolkit=2.0.9=py37_0
  - protobuf=3.11.2=py37he6710b0_0
  - psutil=5.6.1=py37h7b6447c_0
  - psycopg2=2.7.6.1=py37h1ba5d50_0
  - ptyprocess=0.6.0=py37_0
  - py-xgboost=0.90=py37h688424c_0
  - py-xgboost-gpu=0.90=py37h28bbb66_0
  - pyasn1=0.4.8=py_0
  - pycparser=2.19=py_0
  - pygments=2.3.1=py37_0
  - pymongo=3.8.0=py37he6710b0_1
  - pynacl=1.3.0=py37h7b6447c_0
  - pyopenssl=19.0.0=py37_0
  - pyparsing=2.3.1=py37_0
  - pysocks=1.6.8=py37_0
  - python=3.7.3=h0371630_0
  - python-dateutil=2.8.0=py37_0
  - python-editor=1.0.4=py_0
  - pytorch=1.3.1=py3.7_cuda10.0.130_cudnn7.6.3_0
  - pytz=2018.9=py37_0
  - pyyaml=5.1=py37h7b6447c_0
  - pyzmq=18.0.0=py37he6710b0_0
  - readline=7.0=h7b6447c_5
  - requests=2.21.0=py37_0
  - s3transfer=0.2.1=py37_0
  - scikit-learn=0.20.3=py37hd81dba3_0
  - scipy=1.2.1=py37h7c811a0_0
  - setuptools=40.8.0=py37_0
  - simplejson=3.16.0=py37h14c3975_0
  - singledispatch=3.4.0.3=py37_0
  - six=1.12.0=py37_0
  - smmap2=2.0.5=py_0
  - sqlite=3.27.2=h7b6447c_0
  - sqlparse=0.3.0=py_0
  - statsmodels=0.9.0=py37h035aef0_0
  - tabulate=0.8.3=py37_0
  - tensorboard=1.15.0+db2=pyhb230dea_0
  - tensorflow=1.15.0+db2=gpu_py37h9fd0ff8_0
  - tensorflow-base=1.15.0+db2=gpu_py37hd56f5dd_0
  - tensorflow-estimator=1.15.1+db2=pyh2649769_0
  - tensorflow-gpu=1.15.0+db2=h0d30ee6_0
  - termcolor=1.1.0=py37_1
  - tk=8.6.8=hbc83047_0
  - torchvision=0.4.2=py37_cu100
  - tornado=6.0.2=py37h7b6447c_0
  - tqdm=4.31.1=py37_1
  - traitlets=4.3.2=py37_0
  - urllib3=1.24.1=py37_0
  - virtualenv=16.0.0=py37_0
  - wcwidth=0.1.7=py37_0
  - webencodings=0.5.1=py37_1
  - websocket-client=0.56.0=py37_0
  - werkzeug=0.14.1=py37_0
  - wheel=0.33.1=py37_0
  - wrapt=1.11.1=py37h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - yaml=0.1.7=had09818_2
  - zeromq=4.3.1=he6710b0_3
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.3.7=h0b5b093_0
  - pip:
    - argparse==1.4.0
    - databricks-cli==0.9.1
    - deprecated==1.2.7
    - docker==4.1.0
    - fusepy==2.0.4
    - gorilla==0.3.0
    - horovod==0.18.2
    - hyperopt==0.2.2.db1
    - keras==2.2.5
    - matplotlib==3.0.3
    - mleap==0.8.1
    - mlflow==1.5.0
    - nose-exclude==0.5.0
    - pyarrow==0.13.0
    - querystring-parser==1.2.4
    - seaborn==0.9.0
    - tensorboardx==1.9
prefix: /databricks/conda/envs/databricks-ml-gpu

Python モジュールを含む Spark パッケージ

Spark パッケージ Python モジュール Version
graphframes graphframes 0.7.0-db1-spark2.4
spark-deep-learning sparkdl 1.5.0-db12-spark2.4
tensorframes tensorframes 0.8.2-s_2.11

R ライブラリ

この R ライブラリは、Databricks Runtime 6.3 の R ライブラリと同じです。

Java と Scala のライブラリ (Scala 2.11 クラスター)

Databricks Runtime 6.3 ML には、Databricks Runtime 6.3 の Java および Scala ライブラリに加え、次の JAR が含まれています。

グループ ID 成果物 ID Version
com.databricks spark-deep-learning 1.5.0-db12-spark2.4
com.typesafe.akka akka-actor_2.11 2.3.11
ml.combust.mleap mleap-databricks-runtime_2.11 0.15.0
ml.dmlc xgboost4j 0.90
ml.dmlc xgboost4j-spark 0.90
org.graphframes graphframes_2.11 0.7.0-db1-spark2.4
org.mlflow mlflow-client 1.4.0
org.tensorflow libtensorflow 1.15.0
org.tensorflow libtensorflow_jni 1.15.0
org.tensorflow spark-tensorflow-connector_2.11 1.15.0
org.tensorflow tensorflow 1.15.0
org.tensorframes tensorframes 0.8.2-s_2.11