次の方法で共有


ワークフローのチェックポイント処理と再開

チェックポイント処理を使用すると、ワークフローは特定のポイントで状態を保存し、プロセスの再起動後も後で実行を再開できます。 これは、実行時間の長いワークフロー、エラーの回復、および人間のループ内のシナリオに不可欠です。

対象となる概念

[前提条件]

主要コンポーネント

NuGet パッケージのインストール

まず、.NET プロジェクトに必要なパッケージをインストールします。

dotnet add package Microsoft.Agents.AI.Workflows --prerelease

CheckpointManager

CheckpointManagerでは、チェックポイントのストレージと取得の機能が提供されます。

using Microsoft.Agents.AI.Workflows;

// Use the default in-memory checkpoint manager
var checkpointManager = CheckpointManager.Default;

// Or create a custom checkpoint manager with JSON serialization
var checkpointManager = CheckpointManager.CreateJson(store, customOptions);

チェックポイント処理の有効化

InProcessExecutionを使用してワークフローを実行するときにチェックポイント処理を有効にする:

using Microsoft.Agents.AI.Workflows;

// Create workflow with checkpointing support
var workflow = await WorkflowHelper.GetWorkflowAsync();
var checkpointManager = CheckpointManager.Default;

// Execute with checkpointing enabled
await using Checkpointed<StreamingRun> checkpointedRun = await InProcessExecution
    .StreamAsync(workflow, NumberSignal.Init, checkpointManager);

状態の永続化

エグゼキューターの状態

Executor は、 Executor<T> 基底クラスを使用してチェックポイントに残るローカル状態を保持できます。

internal sealed class GuessNumberExecutor : Executor<NumberSignal>("Guess")
{
    private const string StateKey = "GuessNumberExecutor.State";

    public int LowerBound { get; private set; }
    public int UpperBound { get; private set; }

    public GuessNumberExecutor() : this()
    {
    }

    public override async ValueTask HandleAsync(NumberSignal message, IWorkflowContext context, CancellationToken cancellationToken = default)
    {
        int guess = (LowerBound + UpperBound) / 2;
        await context.SendMessageAsync(guess, cancellationToken);
    }

    /// <summary>
    /// Checkpoint the current state of the executor.
    /// This must be overridden to save any state that is needed to resume the executor.
    /// </summary>
    protected override ValueTask OnCheckpointingAsync(IWorkflowContext context, CancellationToken cancellationToken = default) =>
        context.QueueStateUpdateAsync(StateKey, (LowerBound, UpperBound), cancellationToken);

    /// <summary>
    /// Restore the state of the executor from a checkpoint.
    /// This must be overridden to restore any state that was saved during checkpointing.
    /// </summary>
    protected override async ValueTask OnCheckpointRestoredAsync(IWorkflowContext context, CancellationToken cancellationToken = default)
    {
        var state = await context.ReadStateAsync<(int, int)>(StateKey, cancellationToken);
        (LowerBound, UpperBound) = state;
    }
}

チェックポイントの自動作成

チェックポイント マネージャーが指定されると、各スーパー ステップの最後にチェックポイントが自動的に作成されます。

var checkpoints = new List<CheckpointInfo>();

await foreach (WorkflowEvent evt in checkpointedRun.Run.WatchStreamAsync())
{
    switch (evt)
    {
        case SuperStepCompletedEvent superStepCompletedEvt:
            // Checkpoints are automatically created at super step boundaries
            CheckpointInfo? checkpoint = superStepCompletedEvt.CompletionInfo!.Checkpoint;
            if (checkpoint is not null)
            {
                checkpoints.Add(checkpoint);
                Console.WriteLine($"Checkpoint created at step {checkpoints.Count}.");
            }
            break;

        case WorkflowOutputEvent workflowOutputEvt:
            Console.WriteLine($"Workflow completed with result: {workflowOutputEvt.Data}");
            break;
    }
}

チェックポイントの操作

チェックポイント情報へのアクセス

完了した実行からチェックポイント メタデータにアクセスする:

// Get all checkpoints from a checkpointed run
var allCheckpoints = checkpointedRun.Checkpoints;

// Get the latest checkpoint
var latestCheckpoint = checkpointedRun.LatestCheckpoint;

// Access checkpoint details
foreach (var checkpoint in checkpoints)
{
    Console.WriteLine($"Checkpoint ID: {checkpoint.CheckpointId}");
    Console.WriteLine($"Step Number: {checkpoint.StepNumber}");
    Console.WriteLine($"Parent ID: {checkpoint.Parent?.CheckpointId ?? "None"}");
}

チェックポイント ストレージ

チェックポイントは、 CheckpointManager インターフェイスを介して管理されます。

// Commit a checkpoint (usually done automatically)
CheckpointInfo checkpointInfo = await checkpointManager.CommitCheckpointAsync(runId, checkpoint);

// Retrieve a checkpoint
Checkpoint restoredCheckpoint = await checkpointManager.LookupCheckpointAsync(runId, checkpointInfo);

チェックポイントからの再開

ストリーミング再開

チェックポイントから実行を再開し、リアルタイムでイベントをストリームします。

// Resume from a specific checkpoint with streaming
CheckpointInfo savedCheckpoint = checkpoints[checkpointIndex];

await using Checkpointed<StreamingRun> resumedRun = await InProcessExecution
    .ResumeStreamAsync(workflow, savedCheckpoint, checkpointManager, runId);

await foreach (WorkflowEvent evt in resumedRun.Run.WatchStreamAsync())
{
    switch (evt)
    {
        case ExecutorCompletedEvent executorCompletedEvt:
            Console.WriteLine($"Executor {executorCompletedEvt.ExecutorId} completed.");
            break;

        case WorkflowOutputEvent workflowOutputEvt:
            Console.WriteLine($"Workflow completed with result: {workflowOutputEvt.Data}");
            return;
    }
}

ストリーミング以外の再開

再開し、完了するまで待ちます。

// Resume from checkpoint without streaming
Checkpointed<Run> resumedRun = await InProcessExecution
    .ResumeAsync(workflow, savedCheckpoint, checkpointManager, runId);

// Wait for completion and get final result
var result = await resumedRun.Run.WaitForCompletionAsync();

インプレース復元

既存の実行インスタンスにチェックポイントを直接復元します。

// Restore checkpoint to the same run instance
await checkpointedRun.RestoreCheckpointAsync(savedCheckpoint);

// Continue execution from the restored state
await foreach (WorkflowEvent evt in checkpointedRun.Run.WatchStreamAsync())
{
    // Handle events as normal
    if (evt is WorkflowOutputEvent outputEvt)
    {
        Console.WriteLine($"Resumed workflow result: {outputEvt.Data}");
        break;
    }
}

新しいワークフロー インスタンス (リハイドレーション)

チェックポイントから新しいワークフロー インスタンスを作成します。

// Create a completely new workflow instance
var newWorkflow = await WorkflowHelper.GetWorkflowAsync();

// Resume with the new instance from a saved checkpoint
await using Checkpointed<StreamingRun> newCheckpointedRun = await InProcessExecution
    .ResumeStreamAsync(newWorkflow, savedCheckpoint, checkpointManager, originalRunId);

await foreach (WorkflowEvent evt in newCheckpointedRun.Run.WatchStreamAsync())
{
    if (evt is WorkflowOutputEvent workflowOutputEvt)
    {
        Console.WriteLine($"Rehydrated workflow result: {workflowOutputEvt.Data}");
        break;
    }
}

チェックポイントを活用した人間が関与するプロセス

チェックポイント処理と人間のループ内ワークフローを組み合わせる:

var checkpoints = new List<CheckpointInfo>();

await foreach (WorkflowEvent evt in checkpointedRun.Run.WatchStreamAsync())
{
    switch (evt)
    {
        case RequestInfoEvent requestInputEvt:
            // Handle external requests
            ExternalResponse response = HandleExternalRequest(requestInputEvt.Request);
            await checkpointedRun.Run.SendResponseAsync(response);
            break;

        case SuperStepCompletedEvent superStepCompletedEvt:
            // Save checkpoint after each interaction
            CheckpointInfo? checkpoint = superStepCompletedEvt.CompletionInfo!.Checkpoint;
            if (checkpoint is not null)
            {
                checkpoints.Add(checkpoint);
                Console.WriteLine($"Checkpoint created after human interaction.");
            }
            break;

        case WorkflowOutputEvent workflowOutputEvt:
            Console.WriteLine($"Workflow completed: {workflowOutputEvt.Data}");
            return;
    }
}

// Later, resume from any checkpoint
if (checkpoints.Count > 0)
{
    var selectedCheckpoint = checkpoints[1]; // Select specific checkpoint
    await checkpointedRun.RestoreCheckpointAsync(selectedCheckpoint);

    // Continue from that point
    await foreach (WorkflowEvent evt in checkpointedRun.Run.WatchStreamAsync())
    {
        // Handle remaining workflow execution
    }
}

完全なサンプル パターン

包括的なチェックポイント処理ワークフロー パターンを次に示します。

using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using Microsoft.Agents.AI.Workflows;

public static class CheckpointingExample
{
    public static async Task RunAsync()
    {
        // Create workflow and checkpoint manager
        var workflow = await WorkflowHelper.GetWorkflowAsync();
        var checkpointManager = CheckpointManager.Default;
        var checkpoints = new List<CheckpointInfo>();

        Console.WriteLine("Starting workflow with checkpointing...");

        // Execute workflow with checkpointing
        await using Checkpointed<StreamingRun> checkpointedRun = await InProcessExecution
            .StreamAsync(workflow, NumberSignal.Init, checkpointManager);

        // Monitor execution and collect checkpoints
        await foreach (WorkflowEvent evt in checkpointedRun.Run.WatchStreamAsync())
        {
            switch (evt)
            {
                case ExecutorCompletedEvent executorEvt:
                    Console.WriteLine($"Executor {executorEvt.ExecutorId} completed.");
                    break;

                case SuperStepCompletedEvent superStepEvt:
                    var checkpoint = superStepEvt.CompletionInfo!.Checkpoint;
                    if (checkpoint is not null)
                    {
                        checkpoints.Add(checkpoint);
                        Console.WriteLine($"Checkpoint {checkpoints.Count} created.");
                    }
                    break;

                case WorkflowOutputEvent outputEvt:
                    Console.WriteLine($"Workflow completed: {outputEvt.Data}");
                    goto FinishExecution;
            }
        }

        FinishExecution:
        Console.WriteLine($"Total checkpoints created: {checkpoints.Count}");

        // Demonstrate resuming from a checkpoint
        if (checkpoints.Count > 5)
        {
            var selectedCheckpoint = checkpoints[5];
            Console.WriteLine($"Resuming from checkpoint 6...");

            // Restore to same instance
            await checkpointedRun.RestoreCheckpointAsync(selectedCheckpoint);

            await foreach (WorkflowEvent evt in checkpointedRun.Run.WatchStreamAsync())
            {
                if (evt is WorkflowOutputEvent resumedOutputEvt)
                {
                    Console.WriteLine($"Resumed workflow result: {resumedOutputEvt.Data}");
                    break;
                }
            }
        }

        // Demonstrate rehydration with new workflow instance
        if (checkpoints.Count > 3)
        {
            var newWorkflow = await WorkflowHelper.GetWorkflowAsync();
            var rehydrationCheckpoint = checkpoints[3];

            Console.WriteLine("Rehydrating from checkpoint 4 with new workflow instance...");

            await using Checkpointed<StreamingRun> newRun = await InProcessExecution
                .ResumeStreamAsync(newWorkflow, rehydrationCheckpoint, checkpointManager, checkpointedRun.Run.RunId);

            await foreach (WorkflowEvent evt in newRun.Run.WatchStreamAsync())
            {
                if (evt is WorkflowOutputEvent rehydratedOutputEvt)
                {
                    Console.WriteLine($"Rehydrated workflow result: {rehydratedOutputEvt.Data}");
                    break;
                }
            }
        }
    }
}

主な利点

  • フォールト トレランス: ワークフローは、最後のチェックポイントから再開することでエラーから回復できます
  • 長時間実行プロセス: 長いワークフローを、自動チェックポイント境界を持つ管理しやすいセグメントに分割する
  • Human-in-the-Loop: 外部入力を一時停止し、保存された状態から後で再開する
  • デバッグ: 特定のポイントでワークフローの状態を検査し、テストのために実行を再開する
  • 移植性: チェックポイントは新しいワークフロー インスタンスに復元できます (リハイドレート)
  • 自動管理: チェックポイントはスーパー ステップの境界で自動的に作成されます

例を実行する

完全な作業実装については、 CheckpointAndResume サンプルを参照してください。

主要コンポーネント

ファイルチェックポイントストレージ

FileCheckpointStorage クラスは、JSON ファイルを使用して永続的なチェックポイント ストレージを提供します。

from agent_framework import FileCheckpointStorage
from pathlib import Path

# Initialize checkpoint storage
checkpoint_storage = FileCheckpointStorage(storage_path="./checkpoints")

チェックポイント処理の有効化

ワークフローのビルド時にチェックポイント処理を有効にする:

from agent_framework import WorkflowBuilder

workflow = (
    WorkflowBuilder(max_iterations=5)
    .add_edge(executor1, executor2)
    .set_start_executor(executor1)
    .with_checkpointing(checkpoint_storage=checkpoint_storage)  # Enable checkpointing
    .build()
)

状態の永続化

エグゼキューターの状態

Executor は、チェックポイントを超えて持続するローカル状態を保持できます。

from agent_framework import Executor, WorkflowContext, handler

class WorkerExecutor(Executor):
    """Processes numbers to compute their factor pairs and manages executor state for checkpointing."""

    def __init__(self, id: str) -> None:
        super().__init__(id=id)
        self._composite_number_pairs: dict[int, list[tuple[int, int]]] = {}

    @handler
    async def compute(
        self,
        task: ComputeTask,
        ctx: WorkflowContext[ComputeTask, dict[int, list[tuple[int, int]]]],
    ) -> None:
        """Process the next number in the task, computing its factor pairs."""
        next_number = task.remaining_numbers.pop(0)

        print(f"WorkerExecutor: Computing factor pairs for {next_number}")
        pairs: list[tuple[int, int]] = []
        for i in range(1, next_number):
            if next_number % i == 0:
                pairs.append((i, next_number // i))
        self._composite_number_pairs[next_number] = pairs

        if not task.remaining_numbers:
            # All numbers processed - output the results
            await ctx.yield_output(self._composite_number_pairs)
        else:
            # More numbers to process - continue with remaining task
            await ctx.send_message(task)

    @override
    async def on_checkpoint_save(self) -> dict[str, Any]:
        """Save the executor's internal state for checkpointing."""
        return {"composite_number_pairs": self._composite_number_pairs}

    @override
    async def on_checkpoint_restore(self, state: dict[str, Any]) -> None:
        """Restore the executor's internal state from a checkpoint."""
        self._composite_number_pairs = state.get("composite_number_pairs", {})

チェックポイントの操作

チェックポイントの一覧表示

使用可能なチェックポイントを取得して検査します。

# List all checkpoints
all_checkpoints = await checkpoint_storage.list_checkpoints()

# List checkpoints for a specific workflow
workflow_checkpoints = await checkpoint_storage.list_checkpoints(workflow_id="my-workflow")

# Sort by creation time
sorted_checkpoints = sorted(all_checkpoints, key=lambda cp: cp.timestamp)

チェックポイントからの再開

ストリーミング再開

実行を再開して、ストリーミング イベントをリアルタイムで処理します。

# Resume from a specific checkpoint
async for event in workflow.run_stream(
    checkpoint_id="checkpoint-id",
    checkpoint_storage=checkpoint_storage
):
    print(f"Resumed Event: {event}")

    if isinstance(event, WorkflowOutputEvent):
        print(f"Final Result: {event.data}")
        break

ストリーミング以外の再開

プロセスを再開し、一度にすべての結果を取得します。

# Resume and wait for completion
result = await workflow.run(
    checkpoint_id="checkpoint-id",
    checkpoint_storage=checkpoint_storage
)

# Access final outputs
outputs = result.get_outputs()
print(f"Final outputs: {outputs}")

保留中の要求を処理して再開する

保留中の要求を含むチェックポイントから再開すると、ワークフローはこれらの要求イベントを再出力し、それらをキャプチャして応答できるようにします。

request_info_events = []
# Resume from checkpoint - pending requests will be re-emitted
async for event in workflow.run_stream(
    checkpoint_id="checkpoint-id",
    checkpoint_storage=checkpoint_storage
):
    if isinstance(event, RequestInfoEvent):
        # Capture re-emitted pending requests
        print(f"Pending request re-emitted: {event.request_id}")
        request_info_events.append(event)

# Handle the request and provide response
# If responses are already provided, no need to handle them again
responses = {}
for event in request_info_events:
    response = handle_request(event.data)
    responses[event.request_id] = response

# Send response back to workflow
async for event in workflow.send_responses_streaming(responses):
    if isinstance(event, WorkflowOutputEvent):
        print(f"Workflow completed: {event.data}")

チェックポイントから再開する際、既に応答された保留中の要求がある場合でも、run_stream() を呼び出してワークフローを続行し、その後、事前に用意された応答を使用して send_responses_streaming() を呼び出す必要があります。

対話型チェックポイントの選択

わかりやすいチェックポイントの選択を作成します。

async def select_and_resume_checkpoint(workflow, storage):
    # Get available checkpoints
    checkpoints = await storage.list_checkpoints()
    if not checkpoints:
        print("No checkpoints available")
        return

    # Sort and display options
    sorted_cps = sorted(checkpoints, key=lambda cp: cp.timestamp)
    print("Available checkpoints:")
    for i, cp in enumerate(sorted_cps):
        summary = get_checkpoint_summary(cp)
        print(f"[{i}] {summary.checkpoint_id[:8]}... iter={summary.iteration_count}")

    # Get user selection
    try:
        idx = int(input("Enter checkpoint index: "))
        selected = sorted_cps[idx]

        # Resume from selected checkpoint
        print(f"Resuming from checkpoint: {selected.checkpoint_id}")
        async for event in workflow.run_stream(
            selected.checkpoint_id,
            checkpoint_storage=storage
        ):
            print(f"Event: {event}")

    except (ValueError, IndexError):
        print("Invalid selection")

完全なサンプル パターン

一般的なチェックポイント処理ワークフロー パターンを次に示します。

import asyncio
from pathlib import Path

from agent_framework import (
    FileCheckpointStorage,
    WorkflowBuilder,
    WorkflowOutputEvent,
    get_checkpoint_summary
)

async def main():
    # Setup checkpoint storage
    checkpoint_dir = Path("./checkpoints")
    checkpoint_dir.mkdir(exist_ok=True)
    storage = FileCheckpointStorage(checkpoint_dir)

    # Build workflow with checkpointing
    workflow = (
        WorkflowBuilder()
        .add_edge(executor1, executor2)
        .set_start_executor(executor1)
        .with_checkpointing(storage)
        .build()
    )

    # Initial run
    print("Running workflow...")
    async for event in workflow.run_stream("input data"):
        print(f"Event: {event}")

    # List and inspect checkpoints
    checkpoints = await storage.list_checkpoints()
    for cp in sorted(checkpoints, key=lambda c: c.timestamp):
        summary = get_checkpoint_summary(cp)
        print(f"Checkpoint: {summary.checkpoint_id[:8]}... iter={summary.iteration_count}")

    # Resume from a checkpoint
    if checkpoints:
        latest = max(checkpoints, key=lambda cp: cp.timestamp)
        print(f"Resuming from: {latest.checkpoint_id}")

        async for event in workflow.run_stream(latest.checkpoint_id):
            print(f"Resumed: {event}")

if __name__ == "__main__":
    asyncio.run(main())

主な利点

  • フォールト トレランス: ワークフローは、最後のチェックポイントから再開することでエラーから回復できます
  • 長時間稼働プロセス: チェックポイント境界で管理可能なセグメントに長いワークフローを分割する。
  • Human-in-the-Loop: 人間の入力を一時停止し、後で再開する - 保留中の要求は再開時に再出力されます
  • デバッグ: 特定のポイントでワークフローの状態を検査し、テストのために実行を再開する
  • リソース管理: リソースの可用性に基づいてワークフローを停止および再起動する

例を実行する

完全な作業実装については、Resume を 使用したチェックポイントのサンプルを参照してください。

次のステップ