次の方法で共有


array_union

重複せずに col1 と col2 の要素の和集合を含む新しい配列を返します。

構文

from pyspark.sql import functions as sf

sf.array_union(col1, col2)

パラメーター

パラメーター タイプ Description
col1 pyspark.sql.Column または str 最初の配列を含む列の名前。
col2 pyspark.sql.Column または str 2 番目の配列を含む列の名前。

返品ポリシー

pyspark.sql.Column: col1 と col2 の要素の和集合を含む新しい配列。

例示

例 1: 基本的な使用方法

from pyspark.sql import Row, functions as sf
df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2=["c", "d", "a", "f"])])
df.select(sf.sort_array(sf.array_union(df.c1, df.c2))).show()
+-------------------------------------+
|sort_array(array_union(c1, c2), true)|
+-------------------------------------+
|                      [a, b, c, d, f]|
+-------------------------------------+

例 2: 共通要素のない和集合

from pyspark.sql import Row, functions as sf
df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2=["d", "e", "f"])])
df.select(sf.sort_array(sf.array_union(df.c1, df.c2))).show()
+-------------------------------------+
|sort_array(array_union(c1, c2), true)|
+-------------------------------------+
|                   [a, b, c, d, e, f]|
+-------------------------------------+

例 3: すべての共通要素との和集合

from pyspark.sql import Row, functions as sf
df = spark.createDataFrame([Row(c1=["a", "b", "c"], c2=["a", "b", "c"])])
df.select(sf.sort_array(sf.array_union(df.c1, df.c2))).show()
+-------------------------------------+
|sort_array(array_union(c1, c2), true)|
+-------------------------------------+
|                            [a, b, c]|
+-------------------------------------+

例 4: null 値を含む和集合

from pyspark.sql import Row, functions as sf
df = spark.createDataFrame([Row(c1=["a", "b", None], c2=["a", None, "c"])])
df.select(sf.sort_array(sf.array_union(df.c1, df.c2))).show()
+-------------------------------------+
|sort_array(array_union(c1, c2), true)|
+-------------------------------------+
|                      [NULL, a, b, c]|
+-------------------------------------+

例 5: 空の配列を含む共用体

from pyspark.sql import Row, functions as sf
from pyspark.sql.types import ArrayType, StringType, StructField, StructType
data = [Row(c1=[], c2=["a", "b", "c"])]
schema = StructType([
  StructField("c1", ArrayType(StringType()), True),
  StructField("c2", ArrayType(StringType()), True)
])
df = spark.createDataFrame(data, schema)
df.select(sf.sort_array(sf.array_union(df.c1, df.c2))).show()
+-------------------------------------+
|sort_array(array_union(c1, c2), true)|
+-------------------------------------+
|                            [a, b, c]|
+-------------------------------------+