次の方法で共有


StandardTrainersCatalog.LdSvm メソッド

定義

オーバーロード

LdSvm(BinaryClassificationCatalog+BinaryClassificationTrainers, LdSvmTrainer+Options)

ローカル ディープ SVM モデルを使用してターゲットを予測する高度なオプションを使用して作成 LdSvmTrainer します。

LdSvm(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Int32, Boolean, Boolean)

ローカル ディープ SVM モデルを使用してターゲットを予測する Create LdSvmTrainer

LdSvm(BinaryClassificationCatalog+BinaryClassificationTrainers, LdSvmTrainer+Options)

ローカル ディープ SVM モデルを使用してターゲットを予測する高度なオプションを使用して作成 LdSvmTrainer します。

public static Microsoft.ML.Trainers.LdSvmTrainer LdSvm (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Microsoft.ML.Trainers.LdSvmTrainer.Options options);
static member LdSvm : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * Microsoft.ML.Trainers.LdSvmTrainer.Options -> Microsoft.ML.Trainers.LdSvmTrainer
<Extension()>
Public Function LdSvm (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, options As LdSvmTrainer.Options) As LdSvmTrainer

パラメーター

options
LdSvmTrainer.Options

トレーナーのオプション。

戻り値

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;

namespace Samples.Dynamic.Trainers.BinaryClassification
{
    public static class LdSvmWithOptions
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define trainer options.
            var options = new LdSvmTrainer.Options
            {
                TreeDepth = 5,
                NumberOfIterations = 10000,
                Sigma = 0.1f,
            };

            // Define the trainer.
            var pipeline = mlContext.BinaryClassification.Trainers
                .LdSvm(options);

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data
                .LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data
                .CreateEnumerable<Prediction>(transformedTestData,
                reuseRowObject: false).ToList();

            // Print 5 predictions.
            foreach (var p in predictions.Take(5))
                Console.WriteLine($"Label: {p.Label}, "
                    + $"Prediction: {p.PredictedLabel}");

            // Expected output:
            //   Label: True, Prediction: True
            //   Label: False, Prediction: True
            //   Label: True, Prediction: True
            //   Label: True, Prediction: True
            //   Label: False, Prediction: False

            // Evaluate the overall metrics.
            var metrics = mlContext.BinaryClassification
                .EvaluateNonCalibrated(transformedTestData);

            PrintMetrics(metrics);

            // Expected output:
            //   Accuracy: 0.80
            //   AUC: 0.89
            //   F1 Score: 0.79
            //   Negative Precision: 0.81
            //   Negative Recall: 0.81
            //   Positive Precision: 0.79
            //   Positive Recall: 0.79

            //   TEST POSITIVE RATIO:    0.4760 (238.0/(238.0+262.0))
            //   Confusion table
            //             ||======================
            //   PREDICTED || positive | negative | Recall
            //   TRUTH     ||======================
            //    positive ||      189 |       49 | 0.7941
            //    negative ||       50 |      212 | 0.8092
            //             ||======================
            //   Precision ||   0.7908 |   0.8123 |
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)

        {
            var random = new Random(seed);
            float randomFloat() => (float)random.NextDouble();
            for (int i = 0; i < count; i++)
            {
                var label = randomFloat() > 0.5f;
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    // For data points with false label, the feature values are
                    // slightly increased by adding a constant.
                    Features = Enumerable.Repeat(label, 50)
                        .Select(x => x ? randomFloat() : randomFloat() +
                        0.1f).ToArray()

                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public bool Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public bool Label { get; set; }
            // Predicted label from the trainer.
            public bool PredictedLabel { get; set; }
        }

        // Pretty-print BinaryClassificationMetrics objects.
        private static void PrintMetrics(BinaryClassificationMetrics metrics)
        {
            Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
            Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
            Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
            Console.WriteLine($"Negative Precision: " +
                $"{metrics.NegativePrecision:F2}");

            Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
            Console.WriteLine($"Positive Precision: " +
                $"{metrics.PositivePrecision:F2}");

            Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
            Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
        }
    }
}

適用対象

LdSvm(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Int32, Boolean, Boolean)

ローカル ディープ SVM モデルを使用してターゲットを予測する Create LdSvmTrainer

public static Microsoft.ML.Trainers.LdSvmTrainer LdSvm (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", string exampleWeightColumnName = default, int numberOfIterations = 15000, int treeDepth = 3, bool useBias = true, bool useCachedData = true);
static member LdSvm : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * string * string * string * int * int * bool * bool -> Microsoft.ML.Trainers.LdSvmTrainer
<Extension()>
Public Function LdSvm (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional exampleWeightColumnName As String = Nothing, Optional numberOfIterations As Integer = 15000, Optional treeDepth As Integer = 3, Optional useBias As Boolean = true, Optional useCachedData As Boolean = true) As LdSvmTrainer

パラメーター

labelColumnName
String

ラベル列の名前。

featureColumnName
String

フィーチャー列の名前。 列データは既知のサイズの Singleベクトルである必要があります。

exampleWeightColumnName
String

例の重み付け列の名前 (省略可能)。

numberOfIterations
Int32

イテレーションの数。

treeDepth
Int32

ローカル ディープ SVM ツリーの深さ。

useBias
Boolean

モデルにバイアス項が必要かどうかを示します。

useCachedData
Boolean

キャッシュを使用してデータを反復処理するかどうかを示します。

戻り値

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic.Trainers.BinaryClassification
{
    public static class LdSvm
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define the trainer.
            var pipeline = mlContext.BinaryClassification.Trainers
                .LdSvm();

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data
                .LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data
                .CreateEnumerable<Prediction>(transformedTestData,
                reuseRowObject: false).ToList();

            // Print 5 predictions.
            foreach (var p in predictions.Take(5))
                Console.WriteLine($"Label: {p.Label}, "
                    + $"Prediction: {p.PredictedLabel}");

            // Expected output:
            // Label: True, Prediction: True
            // Label: False, Prediction: True
            // Label: True, Prediction: True
            // Label: True, Prediction: True
            // Label: False, Prediction: False

            // Evaluate the overall metrics.
            var metrics = mlContext.BinaryClassification
                .EvaluateNonCalibrated(transformedTestData);

            PrintMetrics(metrics);

            // Expected output:
            // Accuracy: 0.82
            // AUC: 0.85
            // F1 Score: 0.81
            // Negative Precision: 0.82
            // Negative Recall: 0.82
            // Positive Precision: 0.81
            // Positive Recall: 0.81

            // TEST POSITIVE RATIO:    0.4760 (238.0/(238.0+262.0))
            // Confusion table
            //           ||======================
            // PREDICTED || positive | negative | Recall
            // TRUTH     ||======================
            //  positive ||      192 |       46 | 0.8067
            //  negative ||       46 |      216 | 0.8244
            //           ||======================
            // Precision ||   0.8067 |   0.8244 |
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)

        {
            var random = new Random(seed);
            float randomFloat() => (float)random.NextDouble();
            for (int i = 0; i < count; i++)
            {
                var label = randomFloat() > 0.5f;
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    // For data points with false label, the feature values are
                    // slightly increased by adding a constant.
                    Features = Enumerable.Repeat(label, 50)
                        .Select(x => x ? randomFloat() : randomFloat() +
                        0.1f).ToArray()

                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public bool Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public bool Label { get; set; }
            // Predicted label from the trainer.
            public bool PredictedLabel { get; set; }
        }

        // Pretty-print BinaryClassificationMetrics objects.
        private static void PrintMetrics(BinaryClassificationMetrics metrics)
        {
            Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
            Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
            Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
            Console.WriteLine($"Negative Precision: " +
                $"{metrics.NegativePrecision:F2}");

            Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
            Console.WriteLine($"Positive Precision: " +
                $"{metrics.PositivePrecision:F2}");

            Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
            Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
        }
    }
}

適用対象