次の方法で共有


StandardTrainersCatalog.Sdca メソッド

定義

オーバーロード

Sdca(RegressionCatalog+RegressionTrainers, SdcaRegressionTrainer+Options)

線形回帰モデルを使用してターゲットを予測する高度なオプションを使用して作成 SdcaRegressionTrainer します。

Sdca(RegressionCatalog+RegressionTrainers, String, String, String, ISupportSdcaRegressionLoss, Nullable<Single>, Nullable<Single>, Nullable<Int32>)

Create SdcaRegressionTrainer。線形回帰モデルを使用してターゲットを予測します。

Sdca(RegressionCatalog+RegressionTrainers, SdcaRegressionTrainer+Options)

線形回帰モデルを使用してターゲットを予測する高度なオプションを使用して作成 SdcaRegressionTrainer します。

public static Microsoft.ML.Trainers.SdcaRegressionTrainer Sdca (this Microsoft.ML.RegressionCatalog.RegressionTrainers catalog, Microsoft.ML.Trainers.SdcaRegressionTrainer.Options options);
static member Sdca : Microsoft.ML.RegressionCatalog.RegressionTrainers * Microsoft.ML.Trainers.SdcaRegressionTrainer.Options -> Microsoft.ML.Trainers.SdcaRegressionTrainer
<Extension()>
Public Function Sdca (catalog As RegressionCatalog.RegressionTrainers, options As SdcaRegressionTrainer.Options) As SdcaRegressionTrainer

パラメーター

catalog
RegressionCatalog.RegressionTrainers

回帰カタログ トレーナー オブジェクト。

options
SdcaRegressionTrainer.Options

トレーナーのオプション。

戻り値

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;

namespace Samples.Dynamic.Trainers.Regression
{
    public static class SdcaWithOptions
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define trainer options.
            var options = new SdcaRegressionTrainer.Options
            {
                LabelColumnName = nameof(DataPoint.Label),
                FeatureColumnName = nameof(DataPoint.Features),
                // Make the convergence tolerance tighter. It effectively leads to
                // more training iterations.
                ConvergenceTolerance = 0.02f,
                // Increase the maximum number of passes over training data. Similar
                // to ConvergenceTolerance, this value specifics the hard iteration
                // limit on the training algorithm.
                MaximumNumberOfIterations = 30,
                // Increase learning rate for bias.
                BiasLearningRate = 0.1f
            };

            // Define the trainer.
            var pipeline =
                mlContext.Regression.Trainers.Sdca(options);

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data.LoadFromEnumerable(
                GenerateRandomDataPoints(5, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data.CreateEnumerable<Prediction>(
                transformedTestData, reuseRowObject: false).ToList();

            // Look at 5 predictions for the Label, side by side with the actual
            // Label for comparison.
            foreach (var p in predictions)
                Console.WriteLine($"Label: {p.Label:F3}, Prediction: {p.Score:F3}");

            // Expected output:
            //   Label: 0.985, Prediction: 0.927
            //   Label: 0.155, Prediction: 0.062
            //   Label: 0.515, Prediction: 0.439
            //   Label: 0.566, Prediction: 0.500
            //   Label: 0.096, Prediction: 0.078

            // Evaluate the overall metrics
            var metrics = mlContext.Regression.Evaluate(transformedTestData);
            PrintMetrics(metrics);

            // Expected output:
            //   Mean Absolute Error: 0.05
            //   Mean Squared Error: 0.00
            //   Root Mean Squared Error: 0.06
            //   RSquared: 0.97 (closer to 1 is better. The worst case is 0)
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)
        {
            var random = new Random(seed);
            for (int i = 0; i < count; i++)
            {
                float label = (float)random.NextDouble();
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    Features = Enumerable.Repeat(label, 50).Select(
                        x => x + (float)random.NextDouble()).ToArray()
                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public float Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public float Label { get; set; }
            // Predicted score from the trainer.
            public float Score { get; set; }
        }

        // Print some evaluation metrics to regression problems.
        private static void PrintMetrics(RegressionMetrics metrics)
        {
            Console.WriteLine("Mean Absolute Error: " + metrics.MeanAbsoluteError);
            Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
            Console.WriteLine(
                "Root Mean Squared Error: " + metrics.RootMeanSquaredError);

            Console.WriteLine("RSquared: " + metrics.RSquared);
        }
    }
}

適用対象

Sdca(RegressionCatalog+RegressionTrainers, String, String, String, ISupportSdcaRegressionLoss, Nullable<Single>, Nullable<Single>, Nullable<Int32>)

Create SdcaRegressionTrainer。線形回帰モデルを使用してターゲットを予測します。

public static Microsoft.ML.Trainers.SdcaRegressionTrainer Sdca (this Microsoft.ML.RegressionCatalog.RegressionTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", string exampleWeightColumnName = default, Microsoft.ML.Trainers.ISupportSdcaRegressionLoss lossFunction = default, float? l2Regularization = default, float? l1Regularization = default, int? maximumNumberOfIterations = default);
static member Sdca : Microsoft.ML.RegressionCatalog.RegressionTrainers * string * string * string * Microsoft.ML.Trainers.ISupportSdcaRegressionLoss * Nullable<single> * Nullable<single> * Nullable<int> -> Microsoft.ML.Trainers.SdcaRegressionTrainer
<Extension()>
Public Function Sdca (catalog As RegressionCatalog.RegressionTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional exampleWeightColumnName As String = Nothing, Optional lossFunction As ISupportSdcaRegressionLoss = Nothing, Optional l2Regularization As Nullable(Of Single) = Nothing, Optional l1Regularization As Nullable(Of Single) = Nothing, Optional maximumNumberOfIterations As Nullable(Of Integer) = Nothing) As SdcaRegressionTrainer

パラメーター

catalog
RegressionCatalog.RegressionTrainers

回帰カタログ トレーナー オブジェクト。

labelColumnName
String

ラベル列の名前。 列データは次の値にする必要があります。 Single

featureColumnName
String

フィーチャー列の名前。 列データは既知のサイズのベクトルである必要があります。 Single

exampleWeightColumnName
String

例の重み付け列の名前 (省略可能)。

lossFunction
ISupportSdcaRegressionLoss

トレーニング プロセスで最小化された 損失 関数。 たとえば、その既定値 SquaredLoss を使用すると、最小二乗トレーナーになります。

l2Regularization
Nullable<Single>

正則化の L2 重み。

l1Regularization
Nullable<Single>

L1 正則化 ハイパーパラメーター。 値が大きいほど、モデルがスパースになる傾向があります。

maximumNumberOfIterations
Nullable<Int32>

データに対して実行するパスの最大数。

戻り値

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic.Trainers.Regression
{
    public static class Sdca
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define the trainer.
            var pipeline = mlContext.Regression.Trainers.Sdca(
                labelColumnName: nameof(DataPoint.Label),
                featureColumnName: nameof(DataPoint.Features));

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data.LoadFromEnumerable(
                GenerateRandomDataPoints(5, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data.CreateEnumerable<Prediction>(
                transformedTestData, reuseRowObject: false).ToList();

            // Look at 5 predictions for the Label, side by side with the actual
            // Label for comparison.
            foreach (var p in predictions)
                Console.WriteLine($"Label: {p.Label:F3}, Prediction: {p.Score:F3}");

            // Expected output:
            //   Label: 0.985, Prediction: 0.960
            //   Label: 0.155, Prediction: 0.072
            //   Label: 0.515, Prediction: 0.455
            //   Label: 0.566, Prediction: 0.500
            //   Label: 0.096, Prediction: 0.079

            // Evaluate the overall metrics
            var metrics = mlContext.Regression.Evaluate(transformedTestData);
            PrintMetrics(metrics);

            // Expected output:
            //   Mean Absolute Error: 0.05
            //   Mean Squared Error: 0.00
            //   Root Mean Squared Error: 0.06
            //   RSquared: 0.97 (closer to 1 is better. The worst case is 0)
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)
        {
            var random = new Random(seed);
            for (int i = 0; i < count; i++)
            {
                float label = (float)random.NextDouble();
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    Features = Enumerable.Repeat(label, 50).Select(
                        x => x + (float)random.NextDouble()).ToArray()
                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public float Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public float Label { get; set; }
            // Predicted score from the trainer.
            public float Score { get; set; }
        }

        // Print some evaluation metrics to regression problems.
        private static void PrintMetrics(RegressionMetrics metrics)
        {
            Console.WriteLine("Mean Absolute Error: " + metrics.MeanAbsoluteError);
            Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
            Console.WriteLine(
                "Root Mean Squared Error: " + metrics.RootMeanSquaredError);

            Console.WriteLine("RSquared: " + metrics.RSquared);
        }
    }
}

適用対象