TimeSeriesCatalog.DetectIidSpike メソッド
定義
重要
一部の情報は、リリース前に大きく変更される可能性があるプレリリースされた製品に関するものです。 Microsoft は、ここに記載されている情報について、明示または黙示を問わず、一切保証しません。
オーバーロード
DetectIidSpike(TransformsCatalog, String, String, Double, Int32, AnomalySide) |
Create IidSpikeEstimator。アダプティブ カーネル密度推定とマルチンゲール スコアに基づいて 、独立した同一分散 (つまり d. ) 時系列のスパイクを予測します。 |
DetectIidSpike(TransformsCatalog, String, String, Int32, Int32, AnomalySide) |
古い.
Create IidSpikeEstimator。アダプティブ カーネル密度推定とマルチンゲール スコアに基づいて 、独立した同一分散 (つまり d. ) 時系列のスパイクを予測します。 |
DetectIidSpike(TransformsCatalog, String, String, Double, Int32, AnomalySide)
Create IidSpikeEstimator。アダプティブ カーネル密度推定とマルチンゲール スコアに基づいて 、独立した同一分散 (つまり d. ) 時系列のスパイクを予測します。
public static Microsoft.ML.Transforms.TimeSeries.IidSpikeEstimator DetectIidSpike (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, double confidence, int pvalueHistoryLength, Microsoft.ML.Transforms.TimeSeries.AnomalySide side = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided);
static member DetectIidSpike : Microsoft.ML.TransformsCatalog * string * string * double * int * Microsoft.ML.Transforms.TimeSeries.AnomalySide -> Microsoft.ML.Transforms.TimeSeries.IidSpikeEstimator
<Extension()>
Public Function DetectIidSpike (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Double, pvalueHistoryLength As Integer, Optional side As AnomalySide = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided) As IidSpikeEstimator
パラメーター
- catalog
- TransformsCatalog
変換のカタログ。
- outputColumnName
- String
の変換の結果として得られる列の inputColumnName
名前。
列データは次のベクトルです Double。 ベクトルには、アラート (ゼロ以外の値はスパイクを意味)、生スコア、p 値の 3 つの要素が含まれています。
- inputColumnName
- String
変換する列の名前。 列データは次の値にする Single必要があります。
に null
設定すると、その値が outputColumnName
ソースとして使用されます。
- confidence
- Double
[0, 100] の範囲でのスパイク検出の信頼度。
- pvalueHistoryLength
- Int32
p 値を計算するためのスライディング ウィンドウのサイズ。
- side
- AnomalySide
正または負の異常を検出するか、またはその両方を検出するかを決定する引数。
戻り値
例
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class DetectIidSpikeBatchPrediction
{
// This example creates a time series (list of Data with the i-th element
// corresponding to the i-th time slot). The estimator is applied then to
// identify spiking points in the series.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with a spike
const int Size = 10;
var data = new List<TimeSeriesData>(Size + 1)
{
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
// This is a spike.
new TimeSeriesData(10),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
};
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup the estimator arguments
string outputColumnName = nameof(IidSpikePrediction.Prediction);
string inputColumnName = nameof(TimeSeriesData.Value);
// The transformed data.
var transformedData = ml.Transforms.DetectIidSpike(outputColumnName,
inputColumnName, 95.0d, Size / 4).Fit(dataView).Transform(dataView);
// Getting the data of the newly created column as an IEnumerable of
// IidSpikePrediction.
var predictionColumn = ml.Data.CreateEnumerable<IidSpikePrediction>(
transformedData, reuseRowObject: false);
Console.WriteLine($"{outputColumnName} column obtained " +
$"post-transformation.");
Console.WriteLine("Data\tAlert\tScore\tP-Value");
int k = 0;
foreach (var prediction in predictionColumn)
PrintPrediction(data[k++].Value, prediction);
// Prediction column obtained post-transformation.
// Data Alert Score P-Value
// 5 0 5.00 0.50
// 5 0 5.00 0.50
// 5 0 5.00 0.50
// 5 0 5.00 0.50
// 5 0 5.00 0.50
// 10 1 10.00 0.00 <-- alert is on, predicted spike
// 5 0 5.00 0.26
// 5 0 5.00 0.26
// 5 0 5.00 0.50
// 5 0 5.00 0.50
// 5 0 5.00 0.50
}
private static void PrintPrediction(float value, IidSpikePrediction
prediction) =>
Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}", value,
prediction.Prediction[0], prediction.Prediction[1],
prediction.Prediction[2]);
class TimeSeriesData
{
public float Value;
public TimeSeriesData(float value)
{
Value = value;
}
}
class IidSpikePrediction
{
[VectorType(3)]
public double[] Prediction { get; set; }
}
}
}
適用対象
DetectIidSpike(TransformsCatalog, String, String, Int32, Int32, AnomalySide)
注意事項
This API method is deprecated, please use the overload with confidence parameter of type double.
Create IidSpikeEstimator。アダプティブ カーネル密度推定とマルチンゲール スコアに基づいて 、独立した同一分散 (つまり d. ) 時系列のスパイクを予測します。
[System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")]
public static Microsoft.ML.Transforms.TimeSeries.IidSpikeEstimator DetectIidSpike (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int pvalueHistoryLength, Microsoft.ML.Transforms.TimeSeries.AnomalySide side = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided);
public static Microsoft.ML.Transforms.TimeSeries.IidSpikeEstimator DetectIidSpike (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int pvalueHistoryLength, Microsoft.ML.Transforms.TimeSeries.AnomalySide side = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided);
[<System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")>]
static member DetectIidSpike : Microsoft.ML.TransformsCatalog * string * string * int * int * Microsoft.ML.Transforms.TimeSeries.AnomalySide -> Microsoft.ML.Transforms.TimeSeries.IidSpikeEstimator
static member DetectIidSpike : Microsoft.ML.TransformsCatalog * string * string * int * int * Microsoft.ML.Transforms.TimeSeries.AnomalySide -> Microsoft.ML.Transforms.TimeSeries.IidSpikeEstimator
<Extension()>
Public Function DetectIidSpike (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Integer, pvalueHistoryLength As Integer, Optional side As AnomalySide = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided) As IidSpikeEstimator
パラメーター
- catalog
- TransformsCatalog
変換のカタログ。
- outputColumnName
- String
の変換の結果として得られる列の inputColumnName
名前。
列データは次のベクトルです Double。 ベクトルには、アラート (ゼロ以外の値はスパイクを意味)、生スコア、p 値の 3 つの要素が含まれています。
- inputColumnName
- String
変換する列の名前。 列データは次の値にする Single必要があります。
に null
設定すると、その値が outputColumnName
ソースとして使用されます。
- confidence
- Int32
[0, 100] の範囲でのスパイク検出の信頼度。
- pvalueHistoryLength
- Int32
p 値を計算するためのスライディング ウィンドウのサイズ。
- side
- AnomalySide
正または負の異常を検出するか、またはその両方を検出するかを決定する引数。
戻り値
- 属性
例
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class DetectIidSpikeBatchPrediction
{
// This example creates a time series (list of Data with the i-th element
// corresponding to the i-th time slot). The estimator is applied then to
// identify spiking points in the series.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with a spike
const int Size = 10;
var data = new List<TimeSeriesData>(Size + 1)
{
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
// This is a spike.
new TimeSeriesData(10),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
};
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup the estimator arguments
string outputColumnName = nameof(IidSpikePrediction.Prediction);
string inputColumnName = nameof(TimeSeriesData.Value);
// The transformed data.
var transformedData = ml.Transforms.DetectIidSpike(outputColumnName,
inputColumnName, 95.0d, Size / 4).Fit(dataView).Transform(dataView);
// Getting the data of the newly created column as an IEnumerable of
// IidSpikePrediction.
var predictionColumn = ml.Data.CreateEnumerable<IidSpikePrediction>(
transformedData, reuseRowObject: false);
Console.WriteLine($"{outputColumnName} column obtained " +
$"post-transformation.");
Console.WriteLine("Data\tAlert\tScore\tP-Value");
int k = 0;
foreach (var prediction in predictionColumn)
PrintPrediction(data[k++].Value, prediction);
// Prediction column obtained post-transformation.
// Data Alert Score P-Value
// 5 0 5.00 0.50
// 5 0 5.00 0.50
// 5 0 5.00 0.50
// 5 0 5.00 0.50
// 5 0 5.00 0.50
// 10 1 10.00 0.00 <-- alert is on, predicted spike
// 5 0 5.00 0.26
// 5 0 5.00 0.26
// 5 0 5.00 0.50
// 5 0 5.00 0.50
// 5 0 5.00 0.50
}
private static void PrintPrediction(float value, IidSpikePrediction
prediction) =>
Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}", value,
prediction.Prediction[0], prediction.Prediction[1],
prediction.Prediction[2]);
class TimeSeriesData
{
public float Value;
public TimeSeriesData(float value)
{
Value = value;
}
}
class IidSpikePrediction
{
[VectorType(3)]
public double[] Prediction { get; set; }
}
}
}