TimeSeriesCatalog.DetectSpikeBySsa メソッド
定義
重要
一部の情報は、リリース前に大きく変更される可能性があるプレリリースされた製品に関するものです。 Microsoft は、ここに記載されている情報について、明示または黙示を問わず、一切保証しません。
オーバーロード
DetectSpikeBySsa(TransformsCatalog, String, String, Double, Int32, Int32, Int32, AnomalySide, ErrorFunction)
Create SsaSpikeEstimator。 単数スペクトル分析 (SSA) を使用して時系列のスパイクを予測します。
public static Microsoft.ML.Transforms.TimeSeries.SsaSpikeEstimator DetectSpikeBySsa (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, double confidence, int pvalueHistoryLength, int trainingWindowSize, int seasonalityWindowSize, Microsoft.ML.Transforms.TimeSeries.AnomalySide side = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided, Microsoft.ML.Transforms.TimeSeries.ErrorFunction errorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference);
static member DetectSpikeBySsa : Microsoft.ML.TransformsCatalog * string * string * double * int * int * int * Microsoft.ML.Transforms.TimeSeries.AnomalySide * Microsoft.ML.Transforms.TimeSeries.ErrorFunction -> Microsoft.ML.Transforms.TimeSeries.SsaSpikeEstimator
<Extension()>
Public Function DetectSpikeBySsa (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Double, pvalueHistoryLength As Integer, trainingWindowSize As Integer, seasonalityWindowSize As Integer, Optional side As AnomalySide = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided, Optional errorFunction As ErrorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference) As SsaSpikeEstimator
パラメーター
- catalog
- TransformsCatalog
変換のカタログ。
- outputColumnName
- String
の変換の結果として得られる列の inputColumnName
名前。
列データは次のベクトルです Double。 ベクトルには、アラート (ゼロ以外の値はスパイクを意味)、生スコア、p 値の 3 つの要素が含まれています。
- inputColumnName
- String
変換する列の名前。 列データは次の値にする Single必要があります。
に null
設定すると、その値が outputColumnName
ソースとして使用されます。
- confidence
- Double
[0, 100] の範囲でのスパイク検出の信頼度。
- pvalueHistoryLength
- Int32
p 値を計算するためのスライディング ウィンドウのサイズ。
- trainingWindowSize
- Int32
トレーニングに使用されるシーケンスの先頭からのポイント数。
- seasonalityWindowSize
- Int32
入力時系列の最大の関連する季節性の上限。
- side
- AnomalySide
正または負の異常を検出するか、またはその両方を検出するかを決定する引数。
- errorFunction
- ErrorFunction
予期される値と観測値の間のエラーを計算するために使用される関数。
戻り値
例
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class DetectSpikeBySsaBatchPrediction
{
// This example creates a time series (list of Data with the i-th element
// corresponding to the i-th time slot). The estimator is applied then to
// identify spiking points in the series. This estimator can account for
// temporal seasonality in the data.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with a recurring pattern and a spike
// within the pattern
const int SeasonalitySize = 5;
const int TrainingSeasons = 3;
const int TrainingSize = SeasonalitySize * TrainingSeasons;
var data = new List<TimeSeriesData>()
{
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
//This is a spike.
new TimeSeriesData(100),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
};
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup estimator arguments
var inputColumnName = nameof(TimeSeriesData.Value);
var outputColumnName = nameof(SsaSpikePrediction.Prediction);
// The transformed data.
var transformedData = ml.Transforms.DetectSpikeBySsa(outputColumnName,
inputColumnName, 95.0d, 8, TrainingSize, SeasonalitySize + 1).Fit(
dataView).Transform(dataView);
// Getting the data of the newly created column as an IEnumerable of
// SsaSpikePrediction.
var predictionColumn = ml.Data.CreateEnumerable<SsaSpikePrediction>(
transformedData, reuseRowObject: false);
Console.WriteLine($"{outputColumnName} column obtained " +
$"post-transformation.");
Console.WriteLine("Data\tAlert\tScore\tP-Value");
int k = 0;
foreach (var prediction in predictionColumn)
PrintPrediction(data[k++].Value, prediction);
// Prediction column obtained post-transformation.
// Data Alert Score P-Value
// 0 0 -2.53 0.50
// 1 0 -0.01 0.01
// 2 0 0.76 0.14
// 3 0 0.69 0.28
// 4 0 1.44 0.18
// 0 0 -1.84 0.17
// 1 0 0.22 0.44
// 2 0 0.20 0.45
// 3 0 0.16 0.47
// 4 0 1.33 0.18
// 0 0 -1.79 0.07
// 1 0 0.16 0.50
// 2 0 0.09 0.50
// 3 0 0.08 0.45
// 4 0 1.31 0.12
// 100 1 98.21 0.00 <-- alert is on, predicted spike
// 0 0 -13.83 0.29
// 1 0 -1.74 0.44
// 2 0 -0.47 0.46
// 3 0 -16.50 0.29
// 4 0 -29.82 0.21
}
private static void PrintPrediction(float value, SsaSpikePrediction
prediction) =>
Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}", value,
prediction.Prediction[0], prediction.Prediction[1],
prediction.Prediction[2]);
class TimeSeriesData
{
public float Value;
public TimeSeriesData(float value)
{
Value = value;
}
}
class SsaSpikePrediction
{
[VectorType(3)]
public double[] Prediction { get; set; }
}
}
}
適用対象
DetectSpikeBySsa(TransformsCatalog, String, String, Int32, Int32, Int32, Int32, AnomalySide, ErrorFunction)
注意事項
This API method is deprecated, please use the overload with confidence parameter of type double.
Create SsaSpikeEstimator。 単数スペクトル分析 (SSA) を使用して時系列のスパイクを予測します。
[System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")]
public static Microsoft.ML.Transforms.TimeSeries.SsaSpikeEstimator DetectSpikeBySsa (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int pvalueHistoryLength, int trainingWindowSize, int seasonalityWindowSize, Microsoft.ML.Transforms.TimeSeries.AnomalySide side = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided, Microsoft.ML.Transforms.TimeSeries.ErrorFunction errorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference);
public static Microsoft.ML.Transforms.TimeSeries.SsaSpikeEstimator DetectSpikeBySsa (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int pvalueHistoryLength, int trainingWindowSize, int seasonalityWindowSize, Microsoft.ML.Transforms.TimeSeries.AnomalySide side = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided, Microsoft.ML.Transforms.TimeSeries.ErrorFunction errorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference);
[<System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")>]
static member DetectSpikeBySsa : Microsoft.ML.TransformsCatalog * string * string * int * int * int * int * Microsoft.ML.Transforms.TimeSeries.AnomalySide * Microsoft.ML.Transforms.TimeSeries.ErrorFunction -> Microsoft.ML.Transforms.TimeSeries.SsaSpikeEstimator
static member DetectSpikeBySsa : Microsoft.ML.TransformsCatalog * string * string * int * int * int * int * Microsoft.ML.Transforms.TimeSeries.AnomalySide * Microsoft.ML.Transforms.TimeSeries.ErrorFunction -> Microsoft.ML.Transforms.TimeSeries.SsaSpikeEstimator
<Extension()>
Public Function DetectSpikeBySsa (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Integer, pvalueHistoryLength As Integer, trainingWindowSize As Integer, seasonalityWindowSize As Integer, Optional side As AnomalySide = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided, Optional errorFunction As ErrorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference) As SsaSpikeEstimator
パラメーター
- catalog
- TransformsCatalog
変換のカタログ。
- outputColumnName
- String
の変換の結果として得られる列の inputColumnName
名前。
列データは次のベクトルです Double。 ベクトルには、アラート (ゼロ以外の値はスパイクを意味)、生スコア、p 値の 3 つの要素が含まれています。
- inputColumnName
- String
変換する列の名前。 列データは次の値にする Single必要があります。
に null
設定すると、その値が outputColumnName
ソースとして使用されます。
- confidence
- Int32
[0, 100] の範囲でのスパイク検出の信頼度。
- pvalueHistoryLength
- Int32
p 値を計算するためのスライディング ウィンドウのサイズ。
- trainingWindowSize
- Int32
トレーニングに使用されるシーケンスの先頭からのポイント数。
- seasonalityWindowSize
- Int32
入力時系列の最大の関連する季節性の上限。
- side
- AnomalySide
正または負の異常を検出するか、またはその両方を検出するかを決定する引数。
- errorFunction
- ErrorFunction
予期される値と観測値の間のエラーを計算するために使用される関数。
戻り値
- 属性
例
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class DetectSpikeBySsaBatchPrediction
{
// This example creates a time series (list of Data with the i-th element
// corresponding to the i-th time slot). The estimator is applied then to
// identify spiking points in the series. This estimator can account for
// temporal seasonality in the data.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with a recurring pattern and a spike
// within the pattern
const int SeasonalitySize = 5;
const int TrainingSeasons = 3;
const int TrainingSize = SeasonalitySize * TrainingSeasons;
var data = new List<TimeSeriesData>()
{
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
//This is a spike.
new TimeSeriesData(100),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
};
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup estimator arguments
var inputColumnName = nameof(TimeSeriesData.Value);
var outputColumnName = nameof(SsaSpikePrediction.Prediction);
// The transformed data.
var transformedData = ml.Transforms.DetectSpikeBySsa(outputColumnName,
inputColumnName, 95.0d, 8, TrainingSize, SeasonalitySize + 1).Fit(
dataView).Transform(dataView);
// Getting the data of the newly created column as an IEnumerable of
// SsaSpikePrediction.
var predictionColumn = ml.Data.CreateEnumerable<SsaSpikePrediction>(
transformedData, reuseRowObject: false);
Console.WriteLine($"{outputColumnName} column obtained " +
$"post-transformation.");
Console.WriteLine("Data\tAlert\tScore\tP-Value");
int k = 0;
foreach (var prediction in predictionColumn)
PrintPrediction(data[k++].Value, prediction);
// Prediction column obtained post-transformation.
// Data Alert Score P-Value
// 0 0 -2.53 0.50
// 1 0 -0.01 0.01
// 2 0 0.76 0.14
// 3 0 0.69 0.28
// 4 0 1.44 0.18
// 0 0 -1.84 0.17
// 1 0 0.22 0.44
// 2 0 0.20 0.45
// 3 0 0.16 0.47
// 4 0 1.33 0.18
// 0 0 -1.79 0.07
// 1 0 0.16 0.50
// 2 0 0.09 0.50
// 3 0 0.08 0.45
// 4 0 1.31 0.12
// 100 1 98.21 0.00 <-- alert is on, predicted spike
// 0 0 -13.83 0.29
// 1 0 -1.74 0.44
// 2 0 -0.47 0.46
// 3 0 -16.50 0.29
// 4 0 -29.82 0.21
}
private static void PrintPrediction(float value, SsaSpikePrediction
prediction) =>
Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}", value,
prediction.Prediction[0], prediction.Prediction[1],
prediction.Prediction[2]);
class TimeSeriesData
{
public float Value;
public TimeSeriesData(float value)
{
Value = value;
}
}
class SsaSpikePrediction
{
[VectorType(3)]
public double[] Prediction { get; set; }
}
}
}