次の方法で共有


RegressionTree クラス

定義

ユーザーに 's 属性を Microsoft.ML.Trainers.FastTree.InternalRegressionTree公開するためのコンテナー クラス。 このクラスは変更不可であるため、多くの読み取り専用メンバーが含まれています。 これはRegressionTree、別の派生クラスQuantileRegressionTreeと同じですRegressionTreeBaseが、いくつかの属性が追加されることに注意してください。

public sealed class RegressionTree : Microsoft.ML.Trainers.FastTree.RegressionTreeBase
type RegressionTree = class
    inherit RegressionTreeBase
Public NotInheritable Class RegressionTree
Inherits RegressionTreeBase
継承
RegressionTree

プロパティ

CategoricalSplitFlags

分割関数の種類を決定します。 [i] が true の場合 CategoricalSplitFlags、i 番目のノードはカテゴリ分割関数を使用します。 それ以外の場合は、従来の数値分割が使用されます。

(継承元 RegressionTreeBase)
LeafValues

LeafValues[i] は、i 番目のリーフで学習された値です。

(継承元 RegressionTreeBase)
LeftChild

LeftChild[i] は、(1) [i] で NumericalSplitFeatureIndexesインデックス付けされた数値特徴がしきい値 NumericalSplitThresholds[i] 以下の場合、または (2) nodeIndex=i で返された値によって GetCategoricalCategoricalSplitFeatureRangeAt(Int32)インデックス付けされたカテゴリ特徴が nodeIndex=i を持つサブセットではない場合に使用される i 番目のノードの GetCategoricalSplitFeaturesAt(Int32) 子インデックスです。 ケース (1) は、[i] が false の場合 CategoricalSplitFlagsにのみ発生し、それ以外の場合は (2) が発生します。 負以外の戻り値は、ノード (つまり、リーフではない) を意味します。たとえば、2 は基になる Microsoft.ML.Trainers.FastTree.RegressionTreeBase._treeノードの 3 番目のノードを意味します。 負の戻り値はリーフを意味します。たとえば、-1 は基になる Microsoft.ML.Trainers.FastTree.RegressionTreeBase._tree(-1) 番目のリーフを表~します。 C# のビットごとの補数演算子であることに ~ 注意してください。詳細については、次を参照してください https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/bitwise-complement-operator

(継承元 RegressionTreeBase)
NumberOfLeaves

ツリー内の葉の数。 NumberOfLeaves非リーフ ノードは考慮されないことに注意してください。

(継承元 RegressionTreeBase)
NumberOfNodes

ツリー内のノードの数。 これには葉は含まれません。 たとえば、node0-node1、node0-leaf3>、node1-leaf1>、node1-leaf2>>、および NumberOfLeaves 2 と 3 を持つツリーは、NumberOfNodesそれぞれ 2 と 3 である必要があります。

(継承元 RegressionTreeBase)
NumericalSplitFeatureIndexes

NumericalSplitFeatureIndexes[i] は、i 番目のノードの分割関数を使用する特徴インデックスです。 この値は、[i] が false の場合 CategoricalSplitFlagsにのみ有効です。

(継承元 RegressionTreeBase)
NumericalSplitThresholds

NumericalSplitThresholds[i] は [i] によって NumericalSplitFeatureIndexesインデックス付けされた機能のしきい値です。ここで、i は i 番目のノードのインデックスです (たとえば、i は 2 番目のノードの Microsoft.ML.Trainers.FastTree.RegressionTreeBase._tree場合は 1 です)。

(継承元 RegressionTreeBase)
RightChild

RightChild[i] は、's document' で説明されている 2 つの条件 (1) と (2) が正しくない場合に LeftChild使用される i 番目のノードの子インデックスです。 その戻り値は、で使用される形式に LeftChild従います。

(継承元 RegressionTreeBase)
SplitGains

ノードでデータを分割することによって得られるゲイン。 その i 番目の値は、i 番目のノードの分割から計算されます。

(継承元 RegressionTreeBase)

メソッド

GetCategoricalCategoricalSplitFeatureRangeAt(Int32)

nodeIndex によってインデックス付けされたノードで使用されるカテゴリしきい値の範囲を返します。 nodeIndex によってインデックス付けされたノードでのカテゴリ分割では、一度に複数の連続する入力特徴を考慮できます。範囲は で GetCategoricalCategoricalSplitFeatureRangeAt(Int32)指定します。 戻り値は常に 2 要素配列です。その 1 番目の要素は開始インデックス、2 番目の要素は特徴セグメントの終了インデックスです。 戻り値は、[nodeIndex] が true の場合 CategoricalSplitFlagsにのみ有効です。

(継承元 RegressionTreeBase)
GetCategoricalSplitFeaturesAt(Int32)

nodeIndex によってインデックス付けされたノードで使用されるカテゴリしきい値を返します。 考慮された入力機能が返された GetCategoricalSplitFeaturesAt(Int32)値のいずれとも一致しない場合は、しきい値未満のイベントと呼ばれるため LeftChild、[nodeIndex] は入力が次に行く子ノードです。 戻り値は、[nodeIndex] が true の場合 CategoricalSplitFlagsにのみ有効です。

(継承元 RegressionTreeBase)

適用対象