次の方法で共有


チュートリアル: カスタム検索エンジンと質問応答システムを作成する

このチュートリアルでは、Spark クラスターから読み込まれた大規模データのインデックスを作成してクエリを実行する方法について説明します。 次のアクションを実行する Jupyter Notebook を設定します。

  • Apache Spark セッションのデータ フレームにさまざまなフォーム (請求書) を読み込む
  • それらを分析して特徴を特定する
  • 結果の出力を組み立てて表形式のデータ構造にする
  • Azure Cognitive Search でホストされている検索インデックスに出力を書き込む
  • 作成したコンテンツを探索してクエリを実行する

1 - 依存関係を設定する

まず、パッケージをインポートし、このワークフローで使用される Azure リソースに接続します。

import os
from pyspark.sql import SparkSession
from synapse.ml.core.platform import running_on_synapse, find_secret

# Bootstrap Spark Session
spark = SparkSession.builder.getOrCreate()

cognitive_key = find_secret("cognitive-api-key") # replace with your cognitive api key
cognitive_location = "eastus"

translator_key = find_secret("translator-key") # replace with your cognitive api key
translator_location = "eastus"

search_key = find_secret("azure-search-key") # replace with your cognitive api key
search_service = "mmlspark-azure-search"
search_index = "form-demo-index-5"

openai_key = find_secret("openai-api-key") # replace with your open ai api key
openai_service_name = "synapseml-openai"
openai_deployment_name = "gpt-35-turbo"
openai_url = f"https://{openai_service_name}.openai.azure.com/"

2 - Spark にデータを読み込む

このコードでは、デモ目的で使用される Azure ストレージ アカウントからいくつかの外部ファイルが読み込まれます。 ファイルはさまざまな請求書であり、データ フレームに読み込まれます。

from pyspark.sql.functions import udf
from pyspark.sql.types import StringType


def blob_to_url(blob):
    [prefix, postfix] = blob.split("@")
    container = prefix.split("/")[-1]
    split_postfix = postfix.split("/")
    account = split_postfix[0]
    filepath = "/".join(split_postfix[1:])
    return "https://{}/{}/{}".format(account, container, filepath)


df2 = (
    spark.read.format("binaryFile")
    .load("wasbs://ignite2021@mmlsparkdemo.blob.core.windows.net/form_subset/*")
    .select("path")
    .limit(10)
    .select(udf(blob_to_url, StringType())("path").alias("url"))
    .cache()
)

display(df2)

3 - フォーム認識を適用する

このコードでは、AnalyzeInvoices トランスフォーマー が読み込まれ、請求書を含むデータ フレームへの参照が渡されます。 これにより、Azure Forms Analyzer の事前構築済みの請求書モデルが呼び出されます。

from synapse.ml.cognitive import AnalyzeInvoices

analyzed_df = (
    AnalyzeInvoices()
    .setSubscriptionKey(cognitive_key)
    .setLocation(cognitive_location)
    .setImageUrlCol("url")
    .setOutputCol("invoices")
    .setErrorCol("errors")
    .setConcurrency(5)
    .transform(df2)
    .cache()
)

display(analyzed_df)

4 - フォーム認識の出力を簡略化する

このコードでは、Form Recognizer トランスフォーマーの出力を分析し、表形式のデータ構造を推論するトランスフォーマーである FormOntologyLearner を使用します。 AnalyzeInvoices の出力は動的であり、コンテンツで検出された機能によって異なります。

FormOntologyLearner では、表形式のデータ構造を作成するために使用できるパターンを探すことによって、AnalyzeInvoices トランスフォーマーのユーティリティが拡張されます。 出力を複数の列と行に整理すると、ダウンストリーム分析が簡単になります。

from synapse.ml.cognitive import FormOntologyLearner

organized_df = (
    FormOntologyLearner()
    .setInputCol("invoices")
    .setOutputCol("extracted")
    .fit(analyzed_df)
    .transform(analyzed_df)
    .select("url", "extracted.*")
    .cache()
)

display(organized_df)

優れた表形式データフレームを使用すると、いくつかの SparkSQL を使用して、フォーム内にある入れ子の表をフラット化できます

from pyspark.sql.functions import explode, col

itemized_df = (
    organized_df.select("*", explode(col("Items")).alias("Item"))
    .drop("Items")
    .select("Item.*", "*")
    .drop("Item")
)

display(itemized_df)

5 - 翻訳を追加する

このコードでは、Azure AI サービスで Azure AI Translator サービスを呼び出すトランスフォーマーである Translate が読み込まれます。 英語では "Description" 列である元のテキストが、さまざまな言語に機械翻訳されます。 すべての出力が "output.translations" 配列に統合されます。

from synapse.ml.cognitive import Translate

translated_df = (
    Translate()
    .setSubscriptionKey(translator_key)
    .setLocation(translator_location)
    .setTextCol("Description")
    .setErrorCol("TranslationError")
    .setOutputCol("output")
    .setToLanguage(["zh-Hans", "fr", "ru", "cy"])
    .setConcurrency(5)
    .transform(itemized_df)
    .withColumn("Translations", col("output.translations")[0])
    .drop("output", "TranslationError")
    .cache()
)

display(translated_df)

6 - OpenAI で製品を絵文字に翻訳する 🤯

from synapse.ml.cognitive.openai import OpenAIPrompt
from pyspark.sql.functions import trim, split

emoji_template = """ 
  Your job is to translate item names into emoji. Do not add anything but the emoji and end the translation with a comma
  
  Two Ducks: 🦆🦆,
  Light Bulb: 💡,
  Three Peaches: 🍑🍑🍑,
  Two kitchen stoves: ♨️♨️,
  A red car: 🚗,
  A person and a cat: 🧍🐈,
  A {Description}: """

prompter = (
    OpenAIPrompt()
    .setSubscriptionKey(openai_key)
    .setDeploymentName(openai_deployment_name)
    .setUrl(openai_url)
    .setMaxTokens(5)
    .setPromptTemplate(emoji_template)
    .setErrorCol("error")
    .setOutputCol("Emoji")
)

emoji_df = (
    prompter.transform(translated_df)
    .withColumn("Emoji", trim(split(col("Emoji"), ",").getItem(0)))
    .drop("error", "prompt")
    .cache()
)
display(emoji_df.select("Description", "Emoji"))

7 - OpenAI でベンダー アドレスの大陸を推論する

continent_template = """
Which continent does the following address belong to? 

Pick one value from Europe, Australia, North America, South America, Asia, Africa, Antarctica. 

Dont respond with anything but one of the above. If you don't know the answer or cannot figure it out from the text, return None. End your answer with a comma.

Address: "6693 Ryan Rd, North Whales",
Continent: Europe,
Address: "6693 Ryan Rd",
Continent: None,
Address: "{VendorAddress}",
Continent:"""

continent_df = (
    prompter.setOutputCol("Continent")
    .setPromptTemplate(continent_template)
    .transform(emoji_df)
    .withColumn("Continent", trim(split(col("Continent"), ",").getItem(0)))
    .drop("error", "prompt")
    .cache()
)
display(continent_df.select("VendorAddress", "Continent"))

8 - フォーム用の Azure Search インデックスを作成する

from synapse.ml.cognitive import *
from pyspark.sql.functions import monotonically_increasing_id, lit

(
    continent_df.withColumn("DocID", monotonically_increasing_id().cast("string"))
    .withColumn("SearchAction", lit("upload"))
    .writeToAzureSearch(
        subscriptionKey=search_key,
        actionCol="SearchAction",
        serviceName=search_service,
        indexName=search_index,
        keyCol="DocID",
    )
)

9 - 検索クエリを試す

import requests

search_url = "https://{}.search.windows.net/indexes/{}/docs/search?api-version=2019-05-06".format(
    search_service, search_index
)
requests.post(
    search_url, json={"search": "door"}, headers={"api-key": search_key}
).json()

10 - Azure Search をツールとして使用できるチャットボットを構築する 🧠🔧

import json
import openai

openai.api_type = "azure"
openai.api_base = openai_url
openai.api_key = openai_key
openai.api_version = "2023-03-15-preview"

chat_context_prompt = f"""
You are a chatbot designed to answer questions with the help of a search engine that has the following information:

{continent_df.columns}

If you dont know the answer to a question say "I dont know". Do not lie or hallucinate information. Be brief. If you need to use the search engine to solve the please output a json in the form of {{"query": "example_query"}}
"""


def search_query_prompt(question):
    return f"""
Given the search engine above, what would you search for to answer the following question?

Question: "{question}"

Please output a json in the form of {{"query": "example_query"}}
"""


def search_result_prompt(query):
    search_results = requests.post(
        search_url, json={"search": query}, headers={"api-key": search_key}
    ).json()
    return f"""

You previously ran a search for "{query}" which returned the following results:

{search_results}

You should use the results to help you answer questions. If you dont know the answer to a question say "I dont know". Do not lie or hallucinate information. Be Brief and mention which query you used to solve the problem. 
"""


def prompt_gpt(messages):
    response = openai.ChatCompletion.create(
        engine=openai_deployment_name, messages=messages, max_tokens=None, top_p=0.95
    )
    return response["choices"][0]["message"]["content"]


def custom_chatbot(question):
    while True:
        try:
            query = json.loads(
                prompt_gpt(
                    [
                        {"role": "system", "content": chat_context_prompt},
                        {"role": "user", "content": search_query_prompt(question)},
                    ]
                )
            )["query"]

            return prompt_gpt(
                [
                    {"role": "system", "content": chat_context_prompt},
                    {"role": "system", "content": search_result_prompt(query)},
                    {"role": "user", "content": question},
                ]
            )
        except Exception as e:
            raise e

11 - チャットボットに質問する

custom_chatbot("What did Luke Diaz buy?")

12 - 簡単な再確認

display(
    continent_df.where(col("CustomerName") == "Luke Diaz")
    .select("Description")
    .distinct()
)