Azure OpenAI Service란?

Azure OpenAI Service는 GPT-4, GPT-4 Turbo with Vision, GPT-3.5-Turbo 및 Embeddings 모델 시리즈를 포함하여 OpenAI의 강력한 언어 모델에 대한 REST API 액세스를 제공합니다. 또한 새로운 GPT-4 및 GPT-3.5-Turbo 모델 시리즈는 이제 일반 공급에 도달했습니다. 이러한 모델은 콘텐츠 생성, 요약, 이미지 이해, 의미 체계 검색 및 자연어를 포함하여 특정 작업에 쉽게 적응할 수 있습니다. 사용자는 REST API, Python SDK 또는 Azure OpenAI Studio의 웹 기반 인터페이스를 통해 서비스에 액세스할 수 있습니다.

기능 개요

기능 Azure OpenAI
사용 가능한 모델 GPT-4 시리즈(비전이 있는 GPT-4 터보 포함)
GPT-3.5-Turbo 시리즈
Embeddings 시리즈
모델 페이지에서 자세히 알아보세요.
미세 조정(미리 보기) GPT-3.5-Turbo (0613)
babbage-002
davinci-002.
가격 여기에서 사용 가능
Vision을 사용한 GPT-4 Turbo에 대한 자세한 내용은 특별 가격 책정 정보를 참조하세요.
가상 네트워크 지원 및 프라이빗 링크 지원 예, 데이터에 Azure OpenAI를 사용하지 않는 한 가능합니다.
관리 ID 예, Microsoft Entra ID를 통해
UI 환경 계정 및 리소스 관리를 위한 Azure Portal ,
모델 탐색 및 미세 조정을 위한 Azure OpenAI Service Studio
모델 지역별 가용성 모델 가용성
콘텐츠 필터링 프롬프트 및 완료는 자동화된 시스템을 사용하여 콘텐츠 정책에 따라 평가됩니다. 심각도가 높은 콘텐츠는 필터링됩니다.

책임 있는 AI

Microsoft는 사용자를 최우선으로 하는 원칙에 따라 AI를 발전시키기 위해 최선을 다하고 있습니다. Azure OpenAI에서 사용할 수 있는 모델과 같은 생성 모델은 상당한 잠재적 이점을 제공하지만 신중한 디자인과 신중한 완화가 없으면 이러한 모델은 잘못되거나 심지어 유해한 콘텐츠를 생성할 가능성이 있습니다. Microsoft는 남용 및 의도하지 않은 피해를 방지하기 위해 상당한 투자를 했습니다. 여기에는 신청자가 잘 정의된 사용 사례를 보여 주도록 요구하고, Microsoft의 책임 있는 AI 사용 원칙을 통합하고, 고객을 지원하기 위한 콘텐츠 필터를 빌드하고, 온보딩 고객에게 책임 있는 AI 구현 지침을 제공하는 것이 포함됩니다.

Azure OpenAI에 액세스하려면 어떻게 해야 하나요?

Azure OpenAI에 액세스하려면 어떻게 해야 하나요?

현재 높은 수요, 예정된 제품 개선 사항, 책임 있는 AI에 대한 Microsoft의 약속을 탐색하기 때문에 액세스가 제한됩니다. 현재 우리는 Microsoft와의 기존 파트너십, 위험이 낮은 사용 사례 및 완화 통합에 전념하는 고객과 협력하고 있습니다.

보다 구체적인 정보는 신청 양식에 포함되어 있습니다. Azure OpenAI에 대한 보다 광범위한 액세스를 책임감 있게 활성화하기 위해 노력하면서 여러분의 인내심을 높이 평가해 드립니다.

액세스를 위해 여기에 적용합니다.

지금 적용

Azure OpenAI 및 OpenAI 비교

Azure OpenAI Service는 Azure의 보안 및 엔터프라이즈 약속을 사용하여 OpenAI GPT-4, GPT-3, Codex, DALL-E, Whisper 및 텍스트 음성 변환 모델을 사용하는 고급 언어 AI를 고객에게 제공합니다. Azure OpenAI는 OpenAI와 API를 공동 개발하여 호환성과 원활한 전환을 보장합니다.

Azure OpenAI를 사용하면 고객은 OpenAI와 동일한 모델을 실행하면서 Microsoft Azure의 보안 기능을 얻을 수 있습니다. Azure OpenAI는 프라이빗 네트워킹, 지역 가용성 및 책임 있는 AI 콘텐츠 필터링을 제공합니다.

주요 개념

프롬프트 및 완료

완성 엔드포인트는 API 서비스의 핵심 구성 요소입니다. 이 API는 모델의 텍스트 입력, 텍스트 출력 인터페이스에 대한 액세스를 제공합니다. 사용자는 영어 텍스트 명령이 포함된 입력 프롬프트를 제공하기만 하면 모델에서 텍스트 완성을 생성합니다.

간단한 프롬프트 및 완성 예제는 다음과 같습니다.

프롬프트: """ count to 5 in a for loop """

완성: for i in range(1, 6): print(i)

토큰

텍스트 토큰

Azure OpenAI는 텍스트를 토큰으로 분해하여 처리합니다. 토큰은 단어 또는 문자 청크일 수 있습니다. 예를 들어 "hamburger"라는 단어는 "ham", "bur" 및 "ger" 토큰으로 분해되지만, "pear"와 같은 짧고 일반적인 단어는 단일 토큰입니다. 많은 토큰이 공백으로 시작합니다(예: " hello" 및 " bye").

지정된 요청에서 처리되는 총 토큰 수는 입력, 출력 및 요청 매개 변수의 길이에 따라 달라집니다. 처리되는 토큰의 양은 모델의 응답 대기 시간 및 처리량에도 영향을 줍니다.

이미지 토큰(GPT-4 Turbo with Vision)

입력 이미지의 토큰 비용은 이미지 크기와 각 이미지에 사용되는 세부 정보 설정(낮음 또는 높음)의 두 가지 기본 요소에 따라 달라집니다. 작동 방식에 대한 분석은 다음과 같습니다.

  • 세부 정보: 낮은 해상도 모드

    • 세부 정보가 낮을수록 API는 더 빠른 응답을 반환하고 높은 세부 정보가 필요하지 않은 사용 사례에 더 적은 입력 토큰을 사용할 수 있습니다.
    • 이러한 이미지는 이미지 크기에 관계없이 각각 85개의 토큰 비용이 듭니다.
    • 예: 4096 x 8192 이미지(낮은 세부 정보): 비용이 고정된 85개의 토큰입니다. 이는 낮은 세부 정보 이미지이며 크기가 이 모드의 비용에 영향을 주지 않기 때문입니다.
  • 세부 정보: 고해상도 모드

    • 높은 세부 정보를 통해 API는 이미지를 더 작은 사각형으로 자르면 이미지를 더 자세히 볼 수 있습니다. 각 사각형은 더 많은 토큰을 사용하여 텍스트를 생성합니다.
    • 토큰 비용은 일련의 크기 조정 단계로 계산됩니다.
      1. 이미지는 가로 세로 비율을 기본 2048 x 2048 정사각형 내에 맞게 먼저 크기 조정됩니다.
      2. 그런 다음 가장 짧은 면이 768픽셀 길이가 되도록 이미지를 축소합니다.
      3. 이미지는 512픽셀 정사각형 타일로 나뉘며, 이러한 타일의 수(부분 타일에 대해 반올림)는 최종 비용을 결정합니다. 각 타일의 비용은 170개입니다.
      4. 총 비용에 85개의 토큰이 추가됩니다.
    • 예: 2048 x 4096 이미지(높은 세부 정보)
      1. 처음에는 2048 정사각형에 맞게 1024 x 2048로 크기가 조정되었습니다.
      2. 768 x 1536으로 크기가 더 조정되었습니다.
      3. 포함하려면 6개의 512px 타일이 필요합니다.
      4. 총 비용은 토큰입니다 170 × 6 + 85 = 1105 .

리소스

Azure OpenAI는 Azure의 새로운 제품 제품입니다. Azure 구독에서 리소스 또는 서비스 인스턴스를 만드는 다른 Azure 제품과 동일한 방식으로 Azure OpenAI를 시작할 수 있습니다. Azure의 리소스 관리 디자인에 대해 자세히 알아볼 수 있습니다.

배포

Azure OpenAI 리소스가 만들어지면 API 호출 및 텍스트 생성을 시작하기 전에 먼저 모델을 배포해야 합니다. 이 작업은 배포 API를 사용하여 수행할 수 있습니다. 이러한 API를 사용하면 사용하려는 모델을 지정할 수 있습니다.

신속한 엔지니어링

OpenAI의 GPT-3, GPT-3.5 및 GPT-4 모델은 프롬프트 기반입니다. 프롬프트 기반 모델에서 사용자는 텍스트 프롬프트를 입력하여 모델과 상호 작용하고 모델은 텍스트 완료로 응답합니다. 이렇게 완료하면 모델의 텍스트 입력이 계속됩니다.

이러한 모델은 매우 강력하지만 해당 동작은 프롬프트에 매우 민감하기도 합니다. 이는 신속한 엔지니어링을 개발하는 데 중요한 기술로 만듭니다.

프롬프트 생성이 어려울 수 있습니다. 실제로 프롬프트는 원하는 작업을 완료하기 위해 모델 가중치를 구성하는 역할을 하지만 과학이라기보다는 예술에 가깝기 때문에 성공적인 프롬프트를 만들기 위해서는 경험과 직관이 필요한 경우가 많습니다.

모델

이 서비스는 사용자에게 몇 가지 다른 모델에 대한 액세스를 제공합니다. 각 모델은 다른 기능과 가격대를 제공합니다.

현재 미리 보기 중인 DALL-E 모델은 사용자가 제공하는 텍스트 프롬프트에서 이미지를 생성합니다.

현재 미리 보기로 있는 위스퍼 모델은 음성을 텍스트로 전사하고 번역하는 데 사용할 수 있습니다.

현재 미리 보기로 있는 텍스트 음성 변환 모델을 사용하여 텍스트 음성 변환을 합성할 수 있습니다.

모델 개념 페이지에서 각 모델에 대해 자세히 알아보세요.

다음 단계

Azure OpenAI를 지원하는 기본 모델에 대해 자세히 알아봅니다.