다음을 통해 공유


StandardTrainersCatalog.LbfgsPoissonRegression 메서드

정의

오버로드

LbfgsPoissonRegression(RegressionCatalog+RegressionTrainers, LbfgsPoissonRegressionTrainer+Options)

선형 회귀 모델을 사용하여 대상을 예측하는 고급 옵션을 사용하여 만듭니 LbfgsPoissonRegressionTrainer 다.

LbfgsPoissonRegression(RegressionCatalog+RegressionTrainers, String, String, String, Single, Single, Single, Int32, Boolean)

선형 회귀 모델을 사용하여 대상을 예측하는 만들기 LbfgsPoissonRegressionTrainer

LbfgsPoissonRegression(RegressionCatalog+RegressionTrainers, LbfgsPoissonRegressionTrainer+Options)

선형 회귀 모델을 사용하여 대상을 예측하는 고급 옵션을 사용하여 만듭니 LbfgsPoissonRegressionTrainer 다.

public static Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer LbfgsPoissonRegression (this Microsoft.ML.RegressionCatalog.RegressionTrainers catalog, Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer.Options options);
static member LbfgsPoissonRegression : Microsoft.ML.RegressionCatalog.RegressionTrainers * Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer.Options -> Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer
<Extension()>
Public Function LbfgsPoissonRegression (catalog As RegressionCatalog.RegressionTrainers, options As LbfgsPoissonRegressionTrainer.Options) As LbfgsPoissonRegressionTrainer

매개 변수

catalog
RegressionCatalog.RegressionTrainers

회귀 카탈로그 트레이너 개체입니다.

options
LbfgsPoissonRegressionTrainer.Options

트레이너 옵션.

반환

예제

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;

namespace Samples.Dynamic.Trainers.Regression
{
    public static class LbfgsPoissonRegressionWithOptions
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define trainer options.
            var options = new LbfgsPoissonRegressionTrainer.Options
            {
                LabelColumnName = nameof(DataPoint.Label),
                FeatureColumnName = nameof(DataPoint.Features),
                // Reduce optimization tolerance to speed up training at the cost of
                // accuracy.
                OptimizationTolerance = 1e-4f,
                // Decrease history size to speed up training at the cost of
                // accuracy.
                HistorySize = 30,
                // Specify scale for initial weights.
                InitialWeightsDiameter = 0.2f
            };

            // Define the trainer.
            var pipeline =
                mlContext.Regression.Trainers.LbfgsPoissonRegression(options);

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data.LoadFromEnumerable(
                GenerateRandomDataPoints(5, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data.CreateEnumerable<Prediction>(
                transformedTestData, reuseRowObject: false).ToList();

            // Look at 5 predictions for the Label, side by side with the actual
            // Label for comparison.
            foreach (var p in predictions)
                Console.WriteLine($"Label: {p.Label:F3}, Prediction: {p.Score:F3}");

            // Expected output:
            //   Label: 0.985, Prediction: 1.110
            //   Label: 0.155, Prediction: 0.169
            //   Label: 0.515, Prediction: 0.400
            //   Label: 0.566, Prediction: 0.415
            //   Label: 0.096, Prediction: 0.169

            // Evaluate the overall metrics
            var metrics = mlContext.Regression.Evaluate(transformedTestData);
            PrintMetrics(metrics);

            // Expected output:
            //   Mean Absolute Error: 0.10
            //   Mean Squared Error: 0.01
            //   Root Mean Squared Error: 0.11
            //   RSquared: 0.89 (closer to 1 is better. The worst case is 0)
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)
        {
            var random = new Random(seed);
            for (int i = 0; i < count; i++)
            {
                float label = (float)random.NextDouble();
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    Features = Enumerable.Repeat(label, 50).Select(
                        x => x + (float)random.NextDouble()).ToArray()
                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public float Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public float Label { get; set; }
            // Predicted score from the trainer.
            public float Score { get; set; }
        }

        // Print some evaluation metrics to regression problems.
        private static void PrintMetrics(RegressionMetrics metrics)
        {
            Console.WriteLine("Mean Absolute Error: " + metrics.MeanAbsoluteError);
            Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
            Console.WriteLine(
                "Root Mean Squared Error: " + metrics.RootMeanSquaredError);

            Console.WriteLine("RSquared: " + metrics.RSquared);
        }
    }
}

적용 대상

LbfgsPoissonRegression(RegressionCatalog+RegressionTrainers, String, String, String, Single, Single, Single, Int32, Boolean)

선형 회귀 모델을 사용하여 대상을 예측하는 만들기 LbfgsPoissonRegressionTrainer

public static Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer LbfgsPoissonRegression (this Microsoft.ML.RegressionCatalog.RegressionTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", string exampleWeightColumnName = default, float l1Regularization = 1, float l2Regularization = 1, float optimizationTolerance = 1E-07, int historySize = 20, bool enforceNonNegativity = false);
static member LbfgsPoissonRegression : Microsoft.ML.RegressionCatalog.RegressionTrainers * string * string * string * single * single * single * int * bool -> Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer
<Extension()>
Public Function LbfgsPoissonRegression (catalog As RegressionCatalog.RegressionTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional exampleWeightColumnName As String = Nothing, Optional l1Regularization As Single = 1, Optional l2Regularization As Single = 1, Optional optimizationTolerance As Single = 1E-07, Optional historySize As Integer = 20, Optional enforceNonNegativity As Boolean = false) As LbfgsPoissonRegressionTrainer

매개 변수

catalog
RegressionCatalog.RegressionTrainers

회귀 카탈로그 트레이너 개체입니다.

labelColumnName
String

레이블 열의 이름입니다. 열 데이터는 .이어야 Single합니다.

featureColumnName
String

기능 열의 이름입니다. 열 데이터는 알려진 크기의 벡터 Single여야 합니다.

exampleWeightColumnName
String

예제 가중치 열의 이름(선택 사항)입니다.

l1Regularization
Single

L1 정규화 하이퍼 매개 변수입니다. 값이 높을수록 스파스 모델이 늘어나게 됩니다.

l2Regularization
Single

정규화를 위한 L2 가중치입니다.

optimizationTolerance
Single

최적화 프로그램 수렴을 위한 임계값입니다.

historySize
Int32

헤시안을 추정하기 위해 기억해야 할 이전 반복 횟수입니다. 값이 낮을수록 더 빠르지만 정확도가 낮아집니다.

enforceNonNegativity
Boolean

음수가 아닌 가중치를 적용합니다.

반환

예제

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic.Trainers.Regression
{
    public static class LbfgsPoissonRegression
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define the trainer.
            var pipeline = mlContext.Regression.Trainers.
                LbfgsPoissonRegression(
                labelColumnName: nameof(DataPoint.Label),
                featureColumnName: nameof(DataPoint.Features));

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data.LoadFromEnumerable(
                GenerateRandomDataPoints(5, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data.CreateEnumerable<Prediction>(
                transformedTestData, reuseRowObject: false).ToList();

            // Look at 5 predictions for the Label, side by side with the actual
            // Label for comparison.
            foreach (var p in predictions)
                Console.WriteLine($"Label: {p.Label:F3}, Prediction: {p.Score:F3}");

            // Expected output:
            //   Label: 0.985, Prediction: 1.109
            //   Label: 0.155, Prediction: 0.171
            //   Label: 0.515, Prediction: 0.400
            //   Label: 0.566, Prediction: 0.417
            //   Label: 0.096, Prediction: 0.172

            // Evaluate the overall metrics
            var metrics = mlContext.Regression.Evaluate(transformedTestData);
            PrintMetrics(metrics);

            // Expected output:
            //   Mean Absolute Error: 0.07
            //   Mean Squared Error: 0.01
            //   Root Mean Squared Error: 0.08
            //   RSquared: 0.93 (closer to 1 is better. The worst case is 0)
        }

        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)
        {
            var random = new Random(seed);
            for (int i = 0; i < count; i++)
            {
                float label = (float)random.NextDouble();
                yield return new DataPoint
                {
                    Label = label,
                    // Create random features that are correlated with the label.
                    Features = Enumerable.Repeat(label, 50).Select(
                        x => x + (float)random.NextDouble()).ToArray()
                };
            }
        }

        // Example with label and 50 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public float Label { get; set; }
            [VectorType(50)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public float Label { get; set; }
            // Predicted score from the trainer.
            public float Score { get; set; }
        }

        // Print some evaluation metrics to regression problems.
        private static void PrintMetrics(RegressionMetrics metrics)
        {
            Console.WriteLine("Mean Absolute Error: " + metrics.MeanAbsoluteError);
            Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
            Console.WriteLine(
                "Root Mean Squared Error: " + metrics.RootMeanSquaredError);

            Console.WriteLine("RSquared: " + metrics.RSquared);
        }
    }
}

적용 대상