FastTreeRegressionTrainer 클래스
정의
중요
일부 정보는 릴리스되기 전에 상당 부분 수정될 수 있는 시험판 제품과 관련이 있습니다. Microsoft는 여기에 제공된 정보에 대해 어떠한 명시적이거나 묵시적인 보증도 하지 않습니다.
IEstimator<TTransformer> FastTree를 사용하여 의사 결정 트리 회귀 모델을 학습하기 위한 것입니다.
public sealed class FastTreeRegressionTrainer : Microsoft.ML.Trainers.FastTree.BoostingFastTreeTrainerBase<Microsoft.ML.Trainers.FastTree.FastTreeRegressionTrainer.Options,Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.FastTree.FastTreeRegressionModelParameters>,Microsoft.ML.Trainers.FastTree.FastTreeRegressionModelParameters>
type FastTreeRegressionTrainer = class
inherit BoostingFastTreeTrainerBase<FastTreeRegressionTrainer.Options, RegressionPredictionTransformer<FastTreeRegressionModelParameters>, FastTreeRegressionModelParameters>
Public NotInheritable Class FastTreeRegressionTrainer
Inherits BoostingFastTreeTrainerBase(Of FastTreeRegressionTrainer.Options, RegressionPredictionTransformer(Of FastTreeRegressionModelParameters), FastTreeRegressionModelParameters)
- 상속
설명
이 트레이너를 만들려면 FastTree 또는 FastTree(옵션)를 사용합니다.
입력 및 출력 열
입력 레이블 열 데이터는 Single이어야 합니다. 입력 기능 열 데이터는 알려진 크기의 벡터 Single여야 합니다.
이 트레이너는 다음 열을 출력합니다.
출력 열 이름 | 열 유형 | Description |
---|---|---|
Score |
Single | 모델에서 예측한 바인딩되지 않은 점수입니다. |
트레이너 특성
기계 학습 작업 | 회귀 |
정규화가 필요한가요? | No |
캐싱이 필요한가요? | No |
Microsoft.ML 외에도 필요한 NuGet | Microsoft.ML.FastTree |
ONNX로 내보낼 수 있습니다. | Yes |
학습 알고리즘 세부 정보
FastTree는 MART 그라데이션 부스팅 알고리즘의 효율적인 구현입니다. 그라데이션 승격은 회귀 문제에 대한 기계 학습 기술입니다. 미리 정의된 손실 함수를 사용해 각 단계의 오류를 측정하고 다음 단계에서 오류를 수정하는 방식으로 각 회귀 트리를 단계별로 작성합니다. 따라서 이 예측 모델은 실제로는 더 약한 예측 모델의 앙상블입니다. 회귀 문제에서 승격은 일련의 해당 트리를 단계별로 빌드한 다음, 임의의 미분 가능한 손실 함수를 사용하여 최적의 트리를 선택합니다.
MART는 리프에 스칼라 값이 있는 의사 결정 트리인 회귀 트리의 앙상블을 학습합니다. 의사 결정(또는 회귀) 트리는 각 내부 노드에서 입력의 기능 값 중 하나를 기반으로 계속할 두 자식 노드를 결정하는 이진 트리 형식의 순서도입니다. 각 리프 노드에서는 값이 반환됩니다. 내부 노드에서 결정은 x = v 테스트 <에 따라 결정됩니다. 여기서 x는 입력 샘플의 기능 값이고 v는 이 기능의 가능한 값 중 하나입니다. 회귀 트리를 통해 생성할 수 있는 함수는 모두 구간적 상수 함수입니다.
각 단계에서 손실 함수의 경사 근사치를 계산하는 회귀 트리를 계산한 후 새 트리의 손실을 최소화하는 계수를 사용해 이전 트리에 추가하는 방식으로 트리 앙상블을 생성합니다. 지정된 인스턴스에 대해 MART에서 생성하는 앙상블의 출력은 트리 출력의 합입니다.
- 이진 분류 문제의 경우에는 일종의 보정을 통해 출력을 확률로 변환합니다.
- 회귀 문제의 경우 출력은 함수의 예측 값입니다.
- 순위 문제의 경우에는 앙상블의 출력 값을 기준으로 인스턴스 순서를 지정합니다.
자세한 내용은 다음을 참조하세요.
사용 예제에 대한 링크는 참고 섹션을 참조하세요.
필드
FeatureColumn |
트레이너가 기대하는 기능 열입니다. (다음에서 상속됨 TrainerEstimatorBase<TTransformer,TModel>) |
GroupIdColumn |
순위 트레이너가 예상하는 선택적 groupID 열입니다. (다음에서 상속됨 TrainerEstimatorBaseWithGroupId<TTransformer,TModel>) |
LabelColumn |
트레이너가 기대하는 레이블 열입니다.
|
WeightColumn |
트레이너가 기대하는 체중 열입니다. 가중치가 학습에 사용되지 않음을 나타내는 일 수 |
속성
Info |
IEstimator<TTransformer> FastTree를 사용하여 의사 결정 트리 회귀 모델을 학습하기 위한 것입니다. (다음에서 상속됨 FastTreeTrainerBase<TOptions,TTransformer,TModel>) |
메서드
Fit(IDataView, IDataView) |
FastTreeRegressionTrainer 학습 데이터와 유효성 검사 데이터를 모두 사용하여 학습하고 .RegressionPredictionTransformer<TModel> |
Fit(IDataView) |
를 학습하고 반환합니다 ITransformer. (다음에서 상속됨 TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
IEstimator<TTransformer> FastTree를 사용하여 의사 결정 트리 회귀 모델을 학습하기 위한 것입니다. (다음에서 상속됨 TrainerEstimatorBase<TTransformer,TModel>) |
확장 메서드
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
추정기 체인에 '캐싱 검사점'을 추가합니다. 이렇게 하면 다운스트림 추정기가 캐시된 데이터에 대해 학습됩니다. 여러 데이터 전달을 수행하는 트레이너 앞에 캐싱 검사점이 있는 것이 좋습니다. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
추정기가 지정된 경우 호출된 대리 Fit(IDataView) 자를 호출할 래핑 개체를 반환합니다. 예측 도구가 적합한 항목에 대한 정보를 반환하는 것이 중요한 경우가 많습니다. 따라서 Fit(IDataView) 메서드는 일반 ITransformer개체가 아닌 구체적으로 형식화된 개체를 반환합니다. 그러나 동시에 IEstimator<TTransformer> 개체가 많은 파이프라인으로 형성되는 경우가 많으므로 변환기를 가져올 추정기가 이 체인의 어딘가에 묻혀 있는 위치를 통해 EstimatorChain<TLastTransformer> 추정기 체인을 빌드해야 할 수 있습니다. 이 시나리오에서는 이 메서드를 통해 fit이 호출되면 호출될 대리자를 연결할 수 있습니다. |