LightGbmMulticlassTrainer 클래스
정의
중요
일부 정보는 릴리스되기 전에 상당 부분 수정될 수 있는 시험판 제품과 관련이 있습니다. Microsoft는 여기에 제공된 정보에 대해 어떠한 명시적이거나 묵시적인 보증도 하지 않습니다.
IEstimator<TTransformer> LightGBM을 사용하여 향상된 의사 결정 트리 다중 클래스 분류 모델을 학습하기 위한 것입니다.
public sealed class LightGbmMulticlassTrainer : Microsoft.ML.Trainers.LightGbm.LightGbmTrainerBase<Microsoft.ML.Trainers.LightGbm.LightGbmMulticlassTrainer.Options,Microsoft.ML.Data.VBuffer<float>,Microsoft.ML.Data.MulticlassPredictionTransformer<Microsoft.ML.Trainers.OneVersusAllModelParameters>,Microsoft.ML.Trainers.OneVersusAllModelParameters>
type LightGbmMulticlassTrainer = class
inherit LightGbmTrainerBase<LightGbmMulticlassTrainer.Options, VBuffer<single>, MulticlassPredictionTransformer<OneVersusAllModelParameters>, OneVersusAllModelParameters>
Public NotInheritable Class LightGbmMulticlassTrainer
Inherits LightGbmTrainerBase(Of LightGbmMulticlassTrainer.Options, VBuffer(Of Single), MulticlassPredictionTransformer(Of OneVersusAllModelParameters), OneVersusAllModelParameters)
- 상속
설명
이 트레이너를 만들려면 LightGbm 또는 LightGbm(옵션)을 사용합니다.
입력 및 출력 열
입력 레이블 열 데이터는 키 형식이어야 하며 기능 열은 알려진 크기의 벡터 Single여야 합니다.
이 트레이너는 다음 열을 출력합니다.
출력 열 이름 | 열 유형 | 설명 |
---|---|---|
Score |
Single 벡터 | 모든 클래스의 점수. 값이 높을수록 연결된 클래스에 해당할 가능성이 높습니다. i번째 요소의 값이 가장 크다면 예측된 레이블 인덱스는 i가 됩니다. i는 0부터 시작하는 인덱스입니다. |
PredictedLabel |
키 형식 | 예측된 레이블의 인덱스입니다. 값이 i라면 실제 레이블은 키 값 입력 레이블 형식에서 i번째 범주입니다. |
트레이너 특성
기계 학습 작업 | 다중 클래스 분류 |
정규화가 필요한가요? | 아니요 |
캐싱이 필요한가요? | 아니요 |
Microsoft.ML 외에도 필요한 NuGet | Microsoft.ML.LightGbm |
ONNX로 내보낼 수 있습니다. | 예 |
학습 알고리즘 세부 정보
LightGBM은 그라데이션 상승 의사 결정 트리의 오픈 소스 구현입니다. 구현 세부 정보는 LightGBM의 공식 설명서 또는 이 문서를 참조하세요.
사용 예제에 대한 링크는 참고 섹션을 참조하세요.
필드
FeatureColumn |
트레이너가 기대하는 기능 열입니다. (다음에서 상속됨 TrainerEstimatorBase<TTransformer,TModel>) |
GroupIdColumn |
순위 트레이너가 예상하는 선택적 groupID 열입니다. (다음에서 상속됨 TrainerEstimatorBaseWithGroupId<TTransformer,TModel>) |
LabelColumn |
트레이너가 기대하는 레이블 열입니다.
|
WeightColumn |
트레이너가 기대하는 체중 열입니다. 가중치가 학습에 사용되지 않음을 나타내는 일 수 |
속성
Info |
IEstimator<TTransformer> LightGBM을 사용하여 향상된 의사 결정 트리 다중 클래스 분류 모델을 학습하기 위한 것입니다. (다음에서 상속됨 LightGbmTrainerBase<TOptions,TOutput,TTransformer,TModel>) |
메서드
Fit(IDataView, IDataView) |
LightGbmMulticlassTrainer 학습 데이터와 유효성 검사 데이터를 모두 사용하여 학습하고 .MulticlassPredictionTransformer<TModel> |
Fit(IDataView) |
를 학습하고 반환합니다 ITransformer. (다음에서 상속됨 TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
IEstimator<TTransformer> LightGBM을 사용하여 향상된 의사 결정 트리 다중 클래스 분류 모델을 학습하기 위한 것입니다. (다음에서 상속됨 TrainerEstimatorBase<TTransformer,TModel>) |
확장 메서드
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
추정기 체인에 '캐싱 검사점'을 추가합니다. 이렇게 하면 다운스트림 추정기가 캐시된 데이터에 대해 학습됩니다. 여러 데이터 전달을 수행하는 트레이너 앞에 캐싱 검사점이 있는 것이 좋습니다. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
추정기가 지정된 경우 호출된 대리 Fit(IDataView) 자를 호출할 래핑 개체를 반환합니다. 예측 도구가 적합한 항목에 대한 정보를 반환하는 것이 중요한 경우가 많습니다. 따라서 Fit(IDataView) 메서드는 일반 ITransformer개체가 아닌 구체적으로 형식화된 개체를 반환합니다. 그러나 동시에 IEstimator<TTransformer> 개체가 많은 파이프라인으로 형성되는 경우가 많으므로 변환기를 가져올 추정기가 이 체인의 어딘가에 묻혀 있는 위치를 통해 EstimatorChain<TLastTransformer> 추정기 체인을 빌드해야 할 수 있습니다. 이 시나리오에서는 이 메서드를 통해 fit이 호출되면 호출될 대리자를 연결할 수 있습니다. |
적용 대상
추가 정보
- LightGbm(MulticlassClassificationCatalog+MulticlassClassificationTrainers, String, String, String, Nullable<Int32>, Nullable<Int32>, Nullable<Double>, Int32)
- LightGbm(MulticlassClassificationCatalog+MulticlassClassificationTrainers, LightGbmMulticlassTrainer+Options)
- LightGbmMulticlassTrainer.Options