Random.Sample 메서드
정의
중요
일부 정보는 릴리스되기 전에 상당 부분 수정될 수 있는 시험판 제품과 관련이 있습니다. Microsoft는 여기에 제공된 정보에 대해 어떠한 명시적이거나 묵시적인 보증도 하지 않습니다.
0.0과 1.0 사이의 임의의 부동 소수점 숫자를 반환합니다.
protected:
virtual double Sample();
protected virtual double Sample ();
abstract member Sample : unit -> double
override this.Sample : unit -> double
Protected Overridable Function Sample () As Double
반환
0.0보다 크거나 같고 1.0보다 작은 배정밀도 부동 소수점 숫자입니다.
예제
다음 예제에서는 에서 Random 클래스를 파생하고 메서드를 Sample 재정의하여 난수 분포를 생성합니다. 이 분포는 기본 클래스의 메서드에 의해 Sample 생성된 균일한 분포와 다릅니다.
using namespace System;
// This derived class converts the uniformly distributed random
// numbers generated by base.Sample() to another distribution.
public ref class RandomProportional : Random
{
// The Sample method generates a distribution proportional to the value
// of the random numbers, in the range [0.0, 1.0].
protected:
virtual double Sample() override
{
return Math::Sqrt(Random::Sample());
}
public:
RandomProportional()
{}
virtual int Next() override
{
return (int) (Sample() * Int32::MaxValue);
}
};
int main(array<System::String ^> ^args)
{
const int rows = 4, cols = 6;
const int runCount = 1000000;
const int distGroupCount = 10;
const double intGroupSize =
((double) Int32::MaxValue + 1.0) / (double)distGroupCount;
RandomProportional ^randObj = gcnew RandomProportional();
array<int>^ intCounts = gcnew array<int>(distGroupCount);
array<int>^ realCounts = gcnew array<int>(distGroupCount);
Console::WriteLine(
"\nThe derived RandomProportional class overrides " +
"the Sample method to \ngenerate random numbers " +
"in the range [0.0, 1.0]. The distribution \nof " +
"the numbers is proportional to their numeric values. " +
"For example, \nnumbers are generated in the " +
"vicinity of 0.75 with three times the \n" +
"probability of those generated near 0.25.");
Console::WriteLine(
"\nRandom doubles generated with the NextDouble() " +
"method:\n");
// Generate and display [rows * cols] random doubles.
for (int i = 0; i < rows; i++)
{
for (int j = 0; j < cols; j++)
Console::Write("{0,12:F8}", randObj->NextDouble());
Console::WriteLine();
}
Console::WriteLine(
"\nRandom integers generated with the Next() " +
"method:\n");
// Generate and display [rows * cols] random integers.
for (int i = 0; i < rows; i++)
{
for (int j = 0; j < cols; j++)
Console::Write("{0,12}", randObj->Next());
Console::WriteLine();
}
Console::WriteLine(
"\nTo demonstrate the proportional distribution, " +
"{0:N0} random \nintegers and doubles are grouped " +
"into {1} equal value ranges. This \n" +
"is the count of values in each range:\n",
runCount, distGroupCount);
Console::WriteLine(
"{0,21}{1,10}{2,20}{3,10}", "Integer Range",
"Count", "Double Range", "Count");
Console::WriteLine(
"{0,21}{1,10}{2,20}{3,10}", "-------------",
"-----", "------------", "-----");
// Generate random integers and doubles, and then count
// them by group.
for (int i = 0; i < runCount; i++)
{
intCounts[ (int)((double)randObj->Next() /
intGroupSize) ]++;
realCounts[ (int)(randObj->NextDouble() *
(double)distGroupCount) ]++;
}
// Display the count of each group.
for (int i = 0; i < distGroupCount; i++)
Console::WriteLine(
"{0,10}-{1,10}{2,10:N0}{3,12:N5}-{4,7:N5}{5,10:N0}",
(int)((double)i * intGroupSize),
(int)((double)(i + 1) * intGroupSize - 1.0),
intCounts[ i ],
((double)i) / (double)distGroupCount,
((double)(i + 1)) / (double)distGroupCount,
realCounts[ i ]);
return 0;
}
/*
This example of Random.Sample() displays output similar to the following:
The derived RandomProportional class overrides the Sample method to
generate random numbers in the range [0.0, 1.0). The distribution
of the numbers is proportional to the number values. For example,
numbers are generated in the vicinity of 0.75 with three times the
probability of those generated near 0.25.
Random doubles generated with the NextDouble() method:
0.59455719 0.17589882 0.83134398 0.35795862 0.91467727 0.54022658
0.93716947 0.54817519 0.94685080 0.93705478 0.18582318 0.71272428
0.77708682 0.95386216 0.70412393 0.86099417 0.08275804 0.79108316
0.71019941 0.84205103 0.41685082 0.58186880 0.89492302 0.73067715
Random integers generated with the Next() method:
1570755704 1279192549 1747627711 1705700211 1372759203 1849655615
2046235980 1210843924 1554274149 1307936697 1480207570 1057595022
337854215 844109928 2028310798 1386669369 2073517658 1291729809
1537248240 1454198019 1934863511 1640004334 2032620207 534654791
To demonstrate the proportional distribution, 1,000,000 random
integers and doubles are grouped into 10 equal value ranges. This
is the count of values in each range:
Integer Range Count Double Range Count
------------- ----- ------------ -----
0- 214748363 10,079 0.00000-0.10000 10,148
214748364- 429496728 29,835 0.10000-0.20000 29,849
429496729- 644245093 49,753 0.20000-0.30000 49,948
644245094- 858993458 70,325 0.30000-0.40000 69,656
858993459-1073741823 89,906 0.40000-0.50000 90,337
1073741824-1288490187 109,868 0.50000-0.60000 110,225
1288490188-1503238552 130,388 0.60000-0.70000 129,986
1503238553-1717986917 149,231 0.70000-0.80000 150,428
1717986918-1932735282 170,234 0.80000-0.90000 169,610
1932735283-2147483647 190,381 0.90000-1.00000 189,813
*/
using System;
// This derived class converts the uniformly distributed random
// numbers generated by base.Sample() to another distribution.
public class RandomProportional : Random
{
// The Sample method generates a distribution proportional to the value
// of the random numbers, in the range [0.0, 1.0].
protected override double Sample()
{
return Math.Sqrt(base.Sample());
}
public override int Next()
{
return (int) (Sample() * int.MaxValue);
}
}
public class RandomSampleDemo
{
static void Main()
{
const int rows = 4, cols = 6;
const int runCount = 1000000;
const int distGroupCount = 10;
const double intGroupSize =
((double)int.MaxValue + 1.0) / (double)distGroupCount;
RandomProportional randObj = new RandomProportional();
int[ ] intCounts = new int[ distGroupCount ];
int[ ] realCounts = new int[ distGroupCount ];
Console.WriteLine(
"\nThe derived RandomProportional class overrides " +
"the Sample method to \ngenerate random numbers " +
"in the range [0.0, 1.0]. The distribution \nof " +
"the numbers is proportional to their numeric values. " +
"For example, \nnumbers are generated in the " +
"vicinity of 0.75 with three times the \n" +
"probability of those generated near 0.25.");
Console.WriteLine(
"\nRandom doubles generated with the NextDouble() " +
"method:\n");
// Generate and display [rows * cols] random doubles.
for (int i = 0; i < rows; i++)
{
for (int j = 0; j < cols; j++)
Console.Write("{0,12:F8}", randObj.NextDouble());
Console.WriteLine();
}
Console.WriteLine(
"\nRandom integers generated with the Next() " +
"method:\n");
// Generate and display [rows * cols] random integers.
for (int i = 0; i < rows; i++)
{
for (int j = 0; j < cols; j++)
Console.Write("{0,12}", randObj.Next());
Console.WriteLine();
}
Console.WriteLine(
"\nTo demonstrate the proportional distribution, " +
"{0:N0} random \nintegers and doubles are grouped " +
"into {1} equal value ranges. This \n" +
"is the count of values in each range:\n",
runCount, distGroupCount);
Console.WriteLine(
"{0,21}{1,10}{2,20}{3,10}", "Integer Range",
"Count", "Double Range", "Count");
Console.WriteLine(
"{0,21}{1,10}{2,20}{3,10}", "-------------",
"-----", "------------", "-----");
// Generate random integers and doubles, and then count
// them by group.
for (int i = 0; i < runCount; i++)
{
intCounts[ (int)((double)randObj.Next() /
intGroupSize) ]++;
realCounts[ (int)(randObj.NextDouble() *
(double)distGroupCount) ]++;
}
// Display the count of each group.
for (int i = 0; i < distGroupCount; i++)
Console.WriteLine(
"{0,10}-{1,10}{2,10:N0}{3,12:N5}-{4,7:N5}{5,10:N0}",
(int)((double)i * intGroupSize),
(int)((double)(i + 1) * intGroupSize - 1.0),
intCounts[ i ],
((double)i) / (double)distGroupCount,
((double)(i + 1)) / (double)distGroupCount,
realCounts[ i ]);
}
}
/*
This example of Random.Sample() displays output similar to the following:
The derived RandomProportional class overrides the Sample method to
generate random numbers in the range [0.0, 1.0). The distribution
of the numbers is proportional to the number values. For example,
numbers are generated in the vicinity of 0.75 with three times the
probability of those generated near 0.25.
Random doubles generated with the NextDouble() method:
0.59455719 0.17589882 0.83134398 0.35795862 0.91467727 0.54022658
0.93716947 0.54817519 0.94685080 0.93705478 0.18582318 0.71272428
0.77708682 0.95386216 0.70412393 0.86099417 0.08275804 0.79108316
0.71019941 0.84205103 0.41685082 0.58186880 0.89492302 0.73067715
Random integers generated with the Next() method:
1570755704 1279192549 1747627711 1705700211 1372759203 1849655615
2046235980 1210843924 1554274149 1307936697 1480207570 1057595022
337854215 844109928 2028310798 1386669369 2073517658 1291729809
1537248240 1454198019 1934863511 1640004334 2032620207 534654791
To demonstrate the proportional distribution, 1,000,000 random
integers and doubles are grouped into 10 equal value ranges. This
is the count of values in each range:
Integer Range Count Double Range Count
------------- ----- ------------ -----
0- 214748363 10,079 0.00000-0.10000 10,148
214748364- 429496728 29,835 0.10000-0.20000 29,849
429496729- 644245093 49,753 0.20000-0.30000 49,948
644245094- 858993458 70,325 0.30000-0.40000 69,656
858993459-1073741823 89,906 0.40000-0.50000 90,337
1073741824-1288490187 109,868 0.50000-0.60000 110,225
1288490188-1503238552 130,388 0.60000-0.70000 129,986
1503238553-1717986917 149,231 0.70000-0.80000 150,428
1717986918-1932735282 170,234 0.80000-0.90000 169,610
1932735283-2147483647 190,381 0.90000-1.00000 189,813
*/
open System
// This derived class converts the uniformly distributed random
// numbers generated by base.Sample() to another distribution.
type RandomProportional() =
inherit Random()
// The Sample method generates a distribution proportional to the value
// of the random numbers, in the range [0.0, 1.0].
override _.Sample() =
sqrt (base.Sample())
override this.Next() =
this.Sample() * float Int32.MaxValue
|> int
let [<Literal>] rows = 4
let [<Literal>] cols = 6
let [<Literal>] runCount = 1000000
let [<Literal>] distGroupCount = 10
let intGroupSize =
(float Int32.MaxValue + 1.0) / float distGroupCount
let randObj = RandomProportional()
printfn """
The derived RandomProportional class overrides the Sample method to
generate random numbers in the range [0.0, 1.0]. The distribution
of the numbers is proportional to their numeric values. For example,
numbers are generated in the vicinity of 0.75 with three times the
probability of those generated near 0.25."""
printfn "\nRandom doubles generated with the NextDouble() method:\n"
// Generate and display [rows * cols] random doubles.
for _ = 1 to rows do
for _ = 1 to cols do
printf $"{randObj.NextDouble(),12:F8}"
printfn ""
printfn "\nRandom integers generated with the Next() method:\n"
// Generate and display [rows * cols] random integers.
for _ = 1 to rows do
for _ = 1 to cols do
printf $"{randObj.Next(),12}"
printfn ""
printfn $"""
To demonstrate the proportional distribution, {runCount:N0} random
integers and doubles are grouped into {distGroupCount} equal value ranges. This
is the count of values in each range:
"""
printfn $"""{"Integer Range",21}{"Count",10}{"Double Range",20}{"Count",10}"""
printfn $"""{"-------------",21}{"-----",10}{"------------",20}{"-----",10}"""
// Generate random integers and doubles, and then count them by group.
let intCounts =
Array.init runCount (fun _ ->
(randObj.Next() |> float) / float intGroupSize
|> int )
|> Array.countBy id
|> Array.map snd
let realCounts =
Array.init runCount (fun _ ->
randObj.NextDouble() * float distGroupCount
|> int )
|> Array.countBy id
|> Array.map snd
// Display the count of each group.
for i = 0 to distGroupCount - 1 do
Console.WriteLine(
"{0,10}-{1,10}{2,10:N0}{3,12:N5}-{4,7:N5}{5,10:N0}",
int(float i * intGroupSize),
int(float (i + 1) * intGroupSize - 1.0),
intCounts.[i],
(float i) / float distGroupCount,
float (i + 1) / float distGroupCount,
realCounts.[i])
(*
This example of Random.Sample() displays output similar to the following:
The derived RandomProportional class overrides the Sample method to
generate random numbers in the range [0.0, 1.0). The distribution
of the numbers is proportional to the number values. For example,
numbers are generated in the vicinity of 0.75 with three times the
probability of those generated near 0.25.
Random doubles generated with the NextDouble() method:
0.59455719 0.17589882 0.83134398 0.35795862 0.91467727 0.54022658
0.93716947 0.54817519 0.94685080 0.93705478 0.18582318 0.71272428
0.77708682 0.95386216 0.70412393 0.86099417 0.08275804 0.79108316
0.71019941 0.84205103 0.41685082 0.58186880 0.89492302 0.73067715
Random integers generated with the Next() method:
1570755704 1279192549 1747627711 1705700211 1372759203 1849655615
2046235980 1210843924 1554274149 1307936697 1480207570 1057595022
337854215 844109928 2028310798 1386669369 2073517658 1291729809
1537248240 1454198019 1934863511 1640004334 2032620207 534654791
To demonstrate the proportional distribution, 1,000,000 random
integers and doubles are grouped into 10 equal value ranges. This
is the count of values in each range:
Integer Range Count Double Range Count
------------- ----- ------------ -----
0- 214748363 10,079 0.00000-0.10000 10,148
214748364- 429496728 29,835 0.10000-0.20000 29,849
429496729- 644245093 49,753 0.20000-0.30000 49,948
644245094- 858993458 70,325 0.30000-0.40000 69,656
858993459-1073741823 89,906 0.40000-0.50000 90,337
1073741824-1288490187 109,868 0.50000-0.60000 110,225
1288490188-1503238552 130,388 0.60000-0.70000 129,986
1503238553-1717986917 149,231 0.70000-0.80000 150,428
1717986918-1932735282 170,234 0.80000-0.90000 169,610
1932735283-2147483647 190,381 0.90000-1.00000 189,813
*)
' This derived class converts the uniformly distributed random
' numbers generated by base.Sample() to another distribution.
Public Class RandomProportional
Inherits Random
' The Sample method generates a distribution proportional to the value
' of the random numbers, in the range [0.0, 1.0].
Protected Overrides Function Sample() As Double
Return Math.Sqrt(MyBase.Sample())
End Function
Public Overrides Function [Next]() As Integer
Return Sample() * Integer.MaxValue
End Function
End Class
Module RandomSampleDemo
Sub Main()
Const rows As Integer = 4, cols As Integer = 6
Const runCount As Integer = 1000000
Const distGroupCount As Integer = 10
Const intGroupSize As Double = _
(CDbl(Integer.MaxValue) + 1.0) / _
CDbl(distGroupCount)
Dim randObj As New RandomProportional()
Dim intCounts(distGroupCount) As Integer
Dim realCounts(distGroupCount) As Integer
Dim i As Integer, j As Integer
Console.WriteLine(vbCrLf & _
"The derived RandomProportional class overrides " & _
"the Sample method to " & vbCrLf & _
"generate random numbers in the range " & _
"[0.0, 1.0]. The distribution " & vbCrLf & _
"of the numbers is proportional to their numeric " & _
"values. For example, " & vbCrLf & _
"numbers are generated in the vicinity of 0.75 " & _
"with three times " & vbCrLf & "the " & _
"probability of those generated near 0.25.")
Console.WriteLine(vbCrLf & _
"Random doubles generated with the NextDouble() " & _
"method:" & vbCrLf)
' Generate and display [rows * cols] random doubles.
For i = 0 To rows - 1
For j = 0 To cols - 1
Console.Write("{0,12:F8}", randObj.NextDouble())
Next j
Console.WriteLine()
Next i
Console.WriteLine(vbCrLf & _
"Random integers generated with the Next() " & _
"method:" & vbCrLf)
' Generate and display [rows * cols] random integers.
For i = 0 To rows - 1
For j = 0 To cols - 1
Console.Write("{0,12}", randObj.Next())
Next j
Console.WriteLine()
Next i
Console.WriteLine(vbCrLf & _
"To demonstrate the proportional distribution, " & _
"{0:N0} random " & vbCrLf & _
"integers and doubles are grouped into {1} " & _
"equal value ranges. This " & vbCrLf & _
"is the count of values in each range:" & vbCrLf, _
runCount, distGroupCount)
Console.WriteLine("{0,21}{1,10}{2,20}{3,10}", _
"Integer Range", "Count", "Double Range", "Count")
Console.WriteLine("{0,21}{1,10}{2,20}{3,10}", _
"-------------", "-----", "------------", "-----")
' Generate random integers and doubles, and then count
' them by group.
For i = 0 To runCount - 1
intCounts(Fix(CDbl(randObj.Next()) / _
intGroupSize)) += 1
realCounts(Fix(randObj.NextDouble() * _
CDbl(distGroupCount))) += 1
Next i
' Display the count of each group.
For i = 0 To distGroupCount - 1
Console.WriteLine( _
"{0,10}-{1,10}{2,10:N0}{3,12:N5}-{4,7:N5}{5,10:N0}", _
Fix(CDbl(i) * intGroupSize), _
Fix(CDbl(i + 1) * intGroupSize - 1.0), _
intCounts(i), _
CDbl(i) / CDbl(distGroupCount), _
CDbl(i + 1) / CDbl(distGroupCount), _
realCounts(i))
Next i
End Sub
End Module
' This example of Random.Sample() generates output similar to the following:
'
' The derived RandomProportional class overrides the Sample method to
' generate random numbers in the range [0.0, 1.0]. The distribution
' of the numbers is proportional to their numeric values. For example,
' numbers are generated in the vicinity of 0.75 with three times
' the probability of those generated near 0.25.
'
' Random doubles generated with the NextDouble() method:
'
' 0.28377004 0.75920598 0.33430371 0.66720626 0.97080243 0.27353772
' 0.17787962 0.54618410 0.08145080 0.56286100 0.99002910 0.64898614
' 0.27673277 0.99455281 0.93778966 0.76162002 0.70533771 0.44375798
' 0.55939883 0.87383136 0.66465779 0.77392566 0.42393411 0.82409159
'
' Random integers generated with the Next() method:
'
' 1364479914 1230312341 1657373812 1526222928 988564704 700078020
' 1801013705 1541517421 1146312560 338318389 1558995993 2027260859
' 884520932 1320070465 570200106 1027684711 943035246 2088689333
' 630809089 1705728475 2140787648 2097858166 1863010875 1386804198
'
' To demonstrate the proportional distribution, 1,000,000 random
' integers and doubles are grouped into 10 equal value ranges. This
' is the count of values in each range:
'
' Integer Range Count Double Range Count
' ------------- ----- ------------ -----
' 0- 214748363 9,892 0.00000-0.10000 9,928
' 214748364- 429496728 30,341 0.10000-0.20000 30,101
' 429496729- 644245093 49,958 0.20000-0.30000 49,964
' 644245094- 858993458 70,099 0.30000-0.40000 70,213
' 858993459-1073741823 90,801 0.40000-0.50000 89,553
' 1073741824-1288490187 109,699 0.50000-0.60000 109,427
' 1288490188-1503238552 129,438 0.60000-0.70000 130,339
' 1503238553-1717986917 149,886 0.70000-0.80000 150,000
' 1717986918-1932735282 170,338 0.80000-0.90000 170,128
' 1932735283-2147483647 189,548 0.90000-1.00000 190,347
설명
다른 임의 분포 또는 다른 난수 생성기 원칙을 생성하려면 클래스에서 클래스를 Random 파생하고 메서드를 재정의합니다 Sample .
중요
메서드는 Sample 입니다 protected
. 즉, 클래스 및 파생 클래스 내에서 Random 만 액세스할 수 있습니다. instance 0에서 Random 1 사이의 난수를 생성하려면 메서드를 호출합니다NextDouble.
상속자 참고
.NET Framework 버전 2.0부터 클래스 Random 를 파생하고 메서드를 재정 Sample() 의하는 경우 메서드의 파생 클래스 구현에서 제공하는 배포는 다음 메서드의 Sample() 기본 클래스 구현에 대한 호출에서 사용되지 않습니다.
Next() 메서드
()이 Next(Int32, Int32)Int32.MaxValue보다 큰 경우
maxValue
-minValue
메서드입니다.
대신 기본 Random 클래스에서 제공하는 균일한 분포가 사용됩니다. 이 동작은 클래스의 Random 전반적인 성능을 향상시킵니다. 파생 클래스에서 메서드의 구현을 호출하도록 이 동작을 Sample() 수정하려면 이러한 세 멤버의 동작도 재정의해야 합니다. 예제에서는 그림을 제공합니다.
적용 대상
추가 정보
.NET