ThreadPool.GetMaxThreads(Int32, Int32) Method
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Retrieves the number of requests to the thread pool that can be active concurrently. All requests above that number remain queued until thread pool threads become available.
public:
static void GetMaxThreads([Runtime::InteropServices::Out] int % workerThreads, [Runtime::InteropServices::Out] int % completionPortThreads);
public static void GetMaxThreads (out int workerThreads, out int completionPortThreads);
static member GetMaxThreads : int * int -> unit
Public Shared Sub GetMaxThreads (ByRef workerThreads As Integer, ByRef completionPortThreads As Integer)
Parameters
- workerThreads
- Int32
The maximum number of worker threads in the thread pool.
- completionPortThreads
- Int32
The maximum number of asynchronous I/O threads in the thread pool.
Examples
The following code example shows how to retrieve a count of the maximum and available number of threads in the thread pool. A work item is queued that uses FileStream
to asynchronously write to two files. The callback methods are timed to overlap. A worker thread handles the work item and, depending on the speed and number of processors on the computer, one or two completion port threads handle the write operations.
using namespace System;
using namespace System::IO;
using namespace System::Security::Permissions;
using namespace System::Threading;
ref class ThreadPoolTest
{
private:
// Maintains state information to be passed to EndWriteCallback.
// This information allows the callback to end the asynchronous
// write operation and signal when it is finished.
ref class State
{
public:
FileStream^ fStream;
AutoResetEvent^ autoEvent;
State( FileStream^ fStream, AutoResetEvent^ autoEvent )
{
this->fStream = fStream;
this->autoEvent = autoEvent;
}
};
public:
ThreadPoolTest(){}
static void EndWriteCallback( IAsyncResult^ asyncResult )
{
Console::WriteLine( "Starting EndWriteCallback." );
State^ stateInfo = dynamic_cast<State^>(asyncResult->AsyncState);
int workerThreads;
int portThreads;
try
{
ThreadPool::GetAvailableThreads( workerThreads, portThreads );
Console::WriteLine( "\nAvailable worker threads: \t{0}"
"\nAvailable completion port threads: {1}\n", workerThreads.ToString(), portThreads.ToString() );
stateInfo->fStream->EndWrite( asyncResult );
// Sleep so the other thread has a chance to run
// before the current thread ends.
Thread::Sleep( 1500 );
}
catch ( Exception^ e )
{
}
finally
{
// Signal that the current thread is finished.
stateInfo->autoEvent->Set();
Console::WriteLine( "Ending EndWriteCallback." );
}
}
static void WorkItemMethod( Object^ mainEvent )
{
Console::WriteLine( "\nStarting WorkItem.\n" );
AutoResetEvent^ autoEvent = gcnew AutoResetEvent( false );
// Create some data.
const int ArraySize = 10000;
const int BufferSize = 1000;
array<Byte>^byteArray = gcnew array<Byte>(ArraySize);
(gcnew Random)->NextBytes( byteArray );
// Create two files and two State objects.
FileStream^ fileWriter1 = gcnew FileStream( "C:\\Test1@##.dat",FileMode::Create,FileAccess::ReadWrite,FileShare::ReadWrite,BufferSize,true );
FileStream^ fileWriter2 = gcnew FileStream( "C:\\Test2@##.dat",FileMode::Create,FileAccess::ReadWrite,FileShare::ReadWrite,BufferSize,true );
State^ stateInfo1 = gcnew State( fileWriter1,autoEvent );
State^ stateInfo2 = gcnew State( fileWriter2,autoEvent );
// Asynchronously write to the files.
fileWriter1->BeginWrite( byteArray, 0, byteArray->Length, gcnew AsyncCallback( &ThreadPoolTest::EndWriteCallback ), stateInfo1 );
fileWriter2->BeginWrite( byteArray, 0, byteArray->Length, gcnew AsyncCallback( &ThreadPoolTest::EndWriteCallback ), stateInfo2 );
// Wait for each callback to finish.
autoEvent->WaitOne();
autoEvent->WaitOne();
fileWriter1->Close();
fileWriter2->Close();
Console::WriteLine( "\nEnding WorkItem.\n" );
// Signal Main that the work item is finished.
dynamic_cast<AutoResetEvent^>(mainEvent)->Set();
}
};
int main()
{
AutoResetEvent^ mainEvent = gcnew AutoResetEvent( false );
int workerThreads;
int portThreads;
ThreadPool::GetMaxThreads( workerThreads, portThreads );
Console::WriteLine( "\nMaximum worker threads: \t{0}"
"\nMaximum completion port threads: {1}", workerThreads.ToString(), portThreads.ToString() );
ThreadPool::GetAvailableThreads( workerThreads, portThreads );
Console::WriteLine( "\nAvailable worker threads: \t{0}"
"\nAvailable completion port threads: {1}\n", workerThreads.ToString(), portThreads.ToString() );
ThreadPool::QueueUserWorkItem( gcnew WaitCallback( &ThreadPoolTest::WorkItemMethod ), mainEvent );
// Since ThreadPool threads are background threads,
// wait for the work item to signal before ending main().
mainEvent->WaitOne( 5000, false );
}
using System;
using System.IO;
using System.Security.Permissions;
using System.Threading;
class Test
{
static void Main()
{
AutoResetEvent mainEvent = new AutoResetEvent(false);
int workerThreads;
int portThreads;
ThreadPool.GetMaxThreads(out workerThreads, out portThreads);
Console.WriteLine("\nMaximum worker threads: \t{0}" +
"\nMaximum completion port threads: {1}",
workerThreads, portThreads);
ThreadPool.GetAvailableThreads(out workerThreads,
out portThreads);
Console.WriteLine("\nAvailable worker threads: \t{0}" +
"\nAvailable completion port threads: {1}\n",
workerThreads, portThreads);
ThreadPool.QueueUserWorkItem(new
WaitCallback(ThreadPoolTest.WorkItemMethod), mainEvent);
// Since ThreadPool threads are background threads,
// wait for the work item to signal before ending Main.
mainEvent.WaitOne(5000, false);
}
}
class ThreadPoolTest
{
// Maintains state information to be passed to EndWriteCallback.
// This information allows the callback to end the asynchronous
// write operation and signal when it is finished.
class State
{
public FileStream fStream;
public AutoResetEvent autoEvent;
public State(FileStream fStream, AutoResetEvent autoEvent)
{
this.fStream = fStream;
this.autoEvent = autoEvent;
}
}
ThreadPoolTest() {}
public static void WorkItemMethod(object mainEvent)
{
Console.WriteLine("\nStarting WorkItem.\n");
AutoResetEvent autoEvent = new AutoResetEvent(false);
// Create some data.
const int ArraySize = 10000;
const int BufferSize = 1000;
byte[] byteArray = new Byte[ArraySize];
new Random().NextBytes(byteArray);
// Create two files and two State objects.
FileStream fileWriter1 =
new FileStream(@"C:\Test1@##.dat", FileMode.Create,
FileAccess.ReadWrite, FileShare.ReadWrite,
BufferSize, true);
FileStream fileWriter2 =
new FileStream(@"C:\Test2@##.dat", FileMode.Create,
FileAccess.ReadWrite, FileShare.ReadWrite,
BufferSize, true);
State stateInfo1 = new State(fileWriter1, autoEvent);
State stateInfo2 = new State(fileWriter2, autoEvent);
// Asynchronously write to the files.
fileWriter1.BeginWrite(byteArray, 0, byteArray.Length,
new AsyncCallback(EndWriteCallback), stateInfo1);
fileWriter2.BeginWrite(byteArray, 0, byteArray.Length,
new AsyncCallback(EndWriteCallback), stateInfo2);
// Wait for the callbacks to signal.
autoEvent.WaitOne();
autoEvent.WaitOne();
fileWriter1.Close();
fileWriter2.Close();
Console.WriteLine("\nEnding WorkItem.\n");
// Signal Main that the work item is finished.
((AutoResetEvent)mainEvent).Set();
}
static void EndWriteCallback(IAsyncResult asyncResult)
{
Console.WriteLine("Starting EndWriteCallback.");
State stateInfo = (State)asyncResult.AsyncState;
int workerThreads;
int portThreads;
try
{
ThreadPool.GetAvailableThreads(out workerThreads,
out portThreads);
Console.WriteLine("\nAvailable worker threads: \t{0}" +
"\nAvailable completion port threads: {1}\n",
workerThreads, portThreads);
stateInfo.fStream.EndWrite(asyncResult);
// Sleep so the other thread has a chance to run
// before the current thread ends.
Thread.Sleep(1500);
}
finally
{
// Signal that the current thread is finished.
stateInfo.autoEvent.Set();
Console.WriteLine("Ending EndWriteCallback.");
}
}
}
Imports System.IO
Imports System.Security.Permissions
Imports System.Threading
Public Class Example
Shared Sub Main()
Dim mainEvent As New AutoResetEvent(False)
Dim workerThreads As Integer
Dim portThreads As Integer
ThreadPool.GetMaxThreads(workerThreads, portThreads)
Console.WriteLine(vbCrLf & "Maximum worker threads: " & _
vbTab & "{0}" & vbCrLf & "Maximum completion port " & _
"threads: {1}", workerThreads, portThreads)
ThreadPool.GetAvailableThreads(workerThreads, portThreads)
Console.WriteLine(vbCrLf & "Available worker threads: " & _
vbTab & "{0}" & vbCrLf & "Available completion port " & _
"threads: {1}" & vbCrLf, workerThreads, portThreads)
ThreadPool.QueueUserWorkItem(AddressOf _
ThreadPoolTest.WorkItemMethod, mainEvent)
' Since ThreadPool threads are background threads,
' wait for the work item to signal before ending Main.
mainEvent.WaitOne(5000, False)
End Sub
End Class
Public Class ThreadPoolTest
' Maintains state information to be passed to EndWriteCallback.
' This information allows the callback to end the asynchronous
' write operation and signal when it is finished.
Class State
Public fStream As FileStream
Public autoEvent As AutoResetEvent
Public Sub New(aFileStream As FileStream, anEvent As AutoResetEvent)
fStream = aFileStream
autoEvent = anEvent
End Sub
End Class
Private Sub New
End Sub
Shared Sub WorkItemMethod(mainEvent As Object)
Console.WriteLine(vbCrLf & "Starting WorkItem." & vbCrLf)
Dim autoEvent As New AutoResetEvent(False)
' Create some data.
Const ArraySize As Integer = 10000
Const BufferSize As Integer = 1000
Dim byteArray As Byte() = New Byte(ArraySize){}
Dim randomGenerator As New Random()
randomGenerator.NextBytes(byteArray)
' Create two files and two State objects.
Dim fileWriter1 As FileStream = _
New FileStream("C:\Test1111.dat", FileMode.Create, _
FileAccess.ReadWrite, FileShare.ReadWrite, _
BufferSize, True)
Dim fileWriter2 As FileStream = _
New FileStream("C:\Test2222.dat", FileMode.Create, _
FileAccess.ReadWrite, FileShare.ReadWrite, _
BufferSize, True)
Dim stateInfo1 As New State(fileWriter1, autoEvent)
Dim stateInfo2 As New State(fileWriter2, autoEvent)
' Asynchronously write to the files.
fileWriter1.BeginWrite(byteArray, 0, byteArray.Length, _
AddressOf EndWriteCallback, stateInfo1)
fileWriter2.BeginWrite(byteArray, 0, byteArray.Length, _
AddressOf EndWriteCallback, stateInfo2)
' Wait for the callbacks to signal.
autoEvent.WaitOne()
autoEvent.WaitOne()
fileWriter1.Close()
fileWriter2.Close()
Console.WriteLine(vbCrLf & "Ending WorkItem." & vbCrLf)
' Signal Main that the work item is finished.
DirectCast(mainEvent, AutoResetEvent).Set()
End Sub
Shared Sub EndWriteCallback(asyncResult As IAsyncResult)
Console.WriteLine("Starting EndWriteCallback.")
Dim stateInfo As State = _
DirectCast(asyncResult.AsyncState, State)
Dim workerThreads As Integer
Dim portThreads As Integer
Try
ThreadPool.GetAvailableThreads(workerThreads, portThreads)
Console.WriteLine(vbCrLf & "Available worker " & _
"threads:" & vbTab & "{0}" & vbCrLf & "Available " & _
"completion port threads: {1}" & vbCrLf, _
workerThreads, portThreads)
stateInfo.fStream.EndWrite(asyncResult)
' Sleep so the other thread has a chance to run
' before the current thread ends.
Thread.Sleep(1500)
Finally
' Signal that the current thread is finished.
stateInfo.autoEvent.Set()
Console.WriteLine("Ending EndWriteCallback.")
End Try
End Sub
End Class
Remarks
When GetMaxThreads returns, the variable specified by workerThreads
contains the maximum number of worker threads allowed in the thread pool, and the variable specified by completionPortThreads
contains the maximum number of asynchronous I/O threads allowed in the thread pool.
You can use the GetAvailableThreads method to determine the actual number of threads in the thread pool at any given time.
You can use the SetMaxThreads to set the maximum number of worker threads and asynchronous I/O threads in the thread pool.
You can queue as many thread pool requests as system memory allows. If there are more requests than thread pool threads, the additional requests remain queued until thread pool threads become available.
Applies to
See also
.NET