Piezīmes
Lai piekļūtu šai lapai, ir nepieciešama autorizācija. Varat mēģināt pierakstīties vai mainīt direktorijus.
Lai piekļūtu šai lapai, ir nepieciešama autorizācija. Varat mēģināt mainīt direktorijus.
Creates a Column of literal value. Supports Spark Connect.
Syntax
from pyspark.databricks.sql import functions as dbf
dbf.lit(col=<col>)
Parameters
| Parameter | Type | Description |
|---|---|---|
col |
pyspark.sql.Column, str, int, float, bool, or list |
The value to make it as a PySpark literal. If a column is passed, it returns the column as is. |
Returns
pyspark.sql.Column: the literal instance.
Examples
Example 1: Creating a literal column with an integer value.
from pyspark.databricks.sql import functions as dbf
df = spark.range(1)
df.select(dbf.lit(5).alias('height'), df.id).show()
+------+---+
|height| id|
+------+---+
| 5| 0|
+------+---+
Example 2: Creating a literal column from a list.
from pyspark.databricks.sql import functions as dbf
spark.range(1).select(dbf.lit([1, 2, 3])).show()
+--------------+
|array(1, 2, 3)|
+--------------+
| [1, 2, 3]|
+--------------+
Example 3: Creating a literal column from a string.
from pyspark.databricks.sql import functions as dbf
df = spark.range(1)
df.select(dbf.lit("PySpark").alias('framework'), df.id).show()
+---------+---+
|framework| id|
+---------+---+
| PySpark| 0|
+---------+---+