Kopīgot, izmantojot


udf

Creates a user defined function (UDF).

Syntax

import pyspark.sql.functions as sf

# As a decorator
@sf.udf
def function_name(col):
    # function body
    pass

# As a decorator with return type
@sf.udf(returnType=<returnType>, useArrow=<useArrow>)
def function_name(col):
    # function body
    pass

# As a function wrapper
sf.udf(f=<function>, returnType=<returnType>, useArrow=<useArrow>)

Parameters

Parameter Type Description
f function Optional. Python function if used as a standalone function.
returnType pyspark.sql.types.DataType or str Optional. The return type of the user-defined function. The value can be either a DataType object or a DDL-formatted type string. Defaults to StringType.
useArrow bool Optional. Whether to use Arrow to optimize the (de)serialization. When it is None, the Spark config "spark.sql.execution.pythonUDF.arrow.enabled" takes effect.

Examples

Example 1: Creating UDFs using lambda, decorator, and decorator with return type.

from pyspark.sql.types import IntegerType
from pyspark.sql.functions import udf

slen = udf(lambda s: len(s), IntegerType())

@udf
def to_upper(s):
    if s is not None:
        return s.upper()

@udf(returnType=IntegerType())
def add_one(x):
    if x is not None:
        return x + 1

df = spark.createDataFrame([(1, "John Doe", 21)], ("id", "name", "age"))
df.select(slen("name").alias("slen(name)"), to_upper("name"), add_one("age")).show()
+----------+--------------+------------+
|slen(name)|to_upper(name)|add_one(age)|
+----------+--------------+------------+
|         8|      JOHN DOE|          22|
+----------+--------------+------------+

Example 2: UDF with keyword arguments.

from pyspark.sql.types import IntegerType
from pyspark.sql.functions import udf, col

@udf(returnType=IntegerType())
def calc(a, b):
    return a + 10 * b

spark.range(2).select(calc(b=col("id") * 10, a=col("id"))).show()
+-----------------------------+
|calc(b => (id * 10), a => id)|
+-----------------------------+
|                            0|
|                          101|
+-----------------------------+

Example 3: Vectorized UDF using pandas Series type hints.

from pyspark.sql.types import IntegerType
from pyspark.sql.functions import udf, col, PandasUDFType
import pandas as pd

@udf(returnType=IntegerType())
def pd_calc(a: pd.Series, b: pd.Series) -> pd.Series:
    return a + 10 * b

pd_calc.evalType == PandasUDFType.SCALAR
spark.range(2).select(pd_calc(b=col("id") * 10, a="id")).show()
+--------------------------------+
|pd_calc(b => (id * 10), a => id)|
+--------------------------------+
|                               0|
|                             101|
+--------------------------------+

Example 4: Vectorized UDF using PyArrow Array type hints.

from pyspark.sql.types import IntegerType
from pyspark.sql.functions import udf, col, ArrowUDFType
import pyarrow as pa

@udf(returnType=IntegerType())
def pa_calc(a: pa.Array, b: pa.Array) -> pa.Array:
    return pa.compute.add(a, pa.compute.multiply(b, 10))

pa_calc.evalType == ArrowUDFType.SCALAR
spark.range(2).select(pa_calc(b=col("id") * 10, a="id")).show()
+--------------------------------+
|pa_calc(b => (id * 10), a => id)|
+--------------------------------+
|                               0|
|                             101|
+--------------------------------+

Example 5: Arrow-optimized Python UDF (default since Spark 4.2).

from pyspark.sql.types import IntegerType
from pyspark.sql.functions import udf

# Arrow optimization is enabled by default since Spark 4.2
@udf(returnType=IntegerType())
def my_udf(x):
    return x + 1

# To explicitly disable Arrow optimization and use pickle-based serialization:
@udf(returnType=IntegerType(), useArrow=False)
def legacy_udf(x):
    return x + 1

Example 6: Creating a non-deterministic UDF.

from pyspark.sql.types import IntegerType
from pyspark.sql.functions import udf
import random

random_udf = udf(lambda: int(random.random() * 100), IntegerType()).asNondeterministic()