Rediģēt

Kopīgot, izmantojot


Upgrade AutoML to SDK v2

In SDK v2, "experiments" and "runs" are consolidated into jobs.

In SDK v1, AutoML was primarily configured and run using the AutoMLConfig class. In SDK v2, this class has been converted to an AutoML job. Although there are some differences in the configuration options, by and large, naming & functionality has been preserved in V2.

This article gives a comparison of scenario(s) in SDK v1 and SDK v2.

Submit AutoML run

  • SDK v1: Below is a sample AutoML classification task. For the entire code, check out our examples repo.

    # Imports
    
    import azureml.core
    from azureml.core.experiment import Experiment
    from azureml.core.workspace import Workspace
    from azureml.core.dataset import Dataset
    from azureml.train.automl import AutoMLConfig
    from azureml.train.automl.run import AutoMLRun   
    
    # Load tabular dataset
    data = "<url_to_data>"
    dataset = Dataset.Tabular.from_delimited_files(data)
    training_data, validation_data = dataset.random_split(percentage=0.8, seed=223)
    label_column_name = "Class"
    
    # Configure Auto ML settings
    automl_settings = {
        "n_cross_validations": 3,
        "primary_metric": "average_precision_score_weighted",
        "enable_early_stopping": True,
        "max_concurrent_iterations": 2,  
        "experiment_timeout_hours": 0.25,  
        "verbosity": logging.INFO,
    }
    
    # Put together an AutoML job constructor
    automl_config = AutoMLConfig(
        task="classification",
        debug_log="automl_errors.log",
        compute_target=compute_target,
        training_data=training_data,
        label_column_name=label_column_name,
        **automl_settings,
    )
    
    # Submit run
    remote_run = experiment.submit(automl_config, show_output=False)
    azureml_url = remote_run.get_portal_url()
    print(azureml_url)
    
  • SDK v2: Below is a sample AutoML classification task. For the entire code, check out our examples repo.

    # Imports
    from azure.ai.ml import automl, Input, MLClient
    
    from azure.ai.ml.constants import AssetTypes
    from azure.ai.ml.automl import (
        classification,
        ClassificationPrimaryMetrics,
        ClassificationModels,
    )
    
    
    # Create MLTables for training dataset
    # Note that AutoML Job can also take in tabular data
    my_training_data_input = Input(
        type=AssetTypes.MLTABLE, path="./data/training-mltable-folder"
    )
    
    # Create the AutoML classification job with the related factory-function.
    classification_job = automl.classification(
        compute="<compute_name>",
        experiment_name="<exp_name?",
        training_data=my_training_data_input,
        target_column_name="<name_of_target_column>",
        primary_metric="accuracy",
        n_cross_validations=5,
        enable_model_explainability=True,
        tags={"my_custom_tag": "My custom value"},
    )
    
    # Limits are all optional
    classification_job.set_limits(
        timeout_minutes=600,
        trial_timeout_minutes=20,
        max_trials=5,
        max_concurrent_trials = 4,
        max_cores_per_trial= 1,
        enable_early_termination=True,
    )
    
    # Training properties are optional
    classification_job.set_training(
        blocked_training_algorithms=["LogisticRegression"],
        enable_onnx_compatible_models=True,
    )
    
    # Submit the AutoML job
    returned_job = ml_client.jobs.create_or_update(classification_job)  
    returned_job
    

Mapping of key functionality in SDK v1 and SDK v2

Functionality in SDK v1 Rough mapping in SDK v2
Method/API in SDK v1 (use links to ref docs) Method/API in SDK v2 (use links to ref docs)

Next steps

For more information, see: