Rediģēt

Kopīgot, izmantojot


discrete_distribution Class

Generates a discrete integer distribution that has uniform-width intervals with uniform probability in each interval.

Syntax

template<class IntType = int>
class discrete_distribution
   {
public:
   // types
   typedef IntType result_type;
   struct param_type;

   // constructor and reset functions
   discrete_distribution();
   template <class InputIterator>
   discrete_distribution(InputIterator firstW, InputIterator lastW);
   discrete_distribution(initializer_list<double> weightlist);
   template <class UnaryOperation>
   discrete_distribution(size_t count, double xmin, double xmax, UnaryOperation funcweight);
   explicit discrete_distribution(const param_type& parm);
   void reset();

   // generating functions
   template <class URNG>
   result_type operator()(URNG& gen);
   template <class URNG>
   result_type operator()(URNG& gen, const param_type& parm);

   // property functions
   vector<double> probabilities() const;
   param_type param() const;
   void param(const param_type& parm);
   result_type min() const;
   result_type max() const;
   };

Parameters

IntType
The integer result type, defaults to int. For possible types, see <random>.

Remarks

This sampling distribution has uniform-width intervals with uniform probability in each interval. For information about other sampling distributions, see piecewise_linear_distribution Class and piecewise_constant_distribution Class.

The following table links to articles about individual members:

discrete_distribution
param_type

The property function vector<double> probabilities() returns the individual probabilities for each integer generated.

For more information about distribution classes and their members, see <random>.

Example

// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>

using namespace std;

void test(const int s) {

    // uncomment to use a non-deterministic generator
    // random_device rd;
    // mt19937 gen(rd());
    mt19937 gen(1701);

    discrete_distribution<> distr({ 1, 2, 3, 4, 5 });

    cout << endl;
    cout << "min() == " << distr.min() << endl;
    cout << "max() == " << distr.max() << endl;
    cout << "probabilities (value: probability):" << endl;
    vector<double> p = distr.probabilities();
    int counter = 0;
    for (const auto& n : p) {
        cout << fixed << setw(11) << counter << ": " << setw(14) << setprecision(10) << n << endl;
        ++counter;
    }
    cout << endl;

    // generate the distribution as a histogram
    map<int, int> histogram;
    for (int i = 0; i < s; ++i) {
        ++histogram[distr(gen)];
    }

    // print results
    cout << "Distribution for " << s << " samples:" << endl;
    for (const auto& elem : histogram) {
        cout << setw(5) << elem.first << ' ' << string(elem.second, ':') << endl;
    }
    cout << endl;
}

int main()
{
    int samples = 100;

    cout << "Use CTRL-Z to bypass data entry and run using default values." << endl;
    cout << "Enter an integer value for the sample count: ";
    cin >> samples;

    test(samples);
}
Use CTRL-Z to bypass data entry and run using default values.
Enter an integer value for the sample count: 100
min() == 0
max() == 4
probabilities (value: probability):
          0:   0.0666666667
          1:   0.1333333333
          2:   0.2000000000
          3:   0.2666666667
          4:   0.3333333333

Distribution for 100 samples:
    0 :::
    1 ::::::::::::::
    2 ::::::::::::::::::
    3 :::::::::::::::::::::::::::::
    4 ::::::::::::::::::::::::::::::::::::

Requirements

Header: <random>

Namespace: std

discrete_distribution::discrete_distribution

Constructs the distribution.

// default constructor
discrete_distribution();

// construct using a range of weights, [firstW, lastW)
template <class InputIterator>
discrete_distribution(InputIterator firstW, InputIterator lastW);

// construct using an initializer list for range of weights
discrete_distribution(initializer_list<double> weightlist);

// construct using unary operation function
template <class UnaryOperation>
discrete_distribution(size_t count, double low, double high, UnaryOperation weightfunc);

// construct from an existing param_type structure
explicit discrete_distribution(const param_type& parm);

Parameters

firstW
The first iterator in the list from which to construct the distribution.

lastW
The last iterator in the list from which to construct the distribution (non-inclusive because iterators use an empty element for the end).

weightlist
The initializer_list from which to construct the distribution.

count
The number of elements in the distribution range. If count==0, equivalent to the default constructor (always generates zero).

low
The lowest value in the distribution range.

high
The highest value in the distribution range.

weightfunc
The object representing the probability function for the distribution. Both the parameter and the return value must be convertible to double.

parm
The param_type structure used to construct the distribution.

Remarks

The default constructor constructs an object whose stored probability value has one element with value 1. This will result in a distribution that always generates a zero.

The iterator range constructor that has parameters firstW and lastW constructs a distribution object by using weight values taken from the iterators over the interval sequence [firstW, lastW).

The initializer list constructor that has a weightlist parameter constructs a distribution object with weights from the initializer list weightlist.

The constructor that has count, low, high, and weightfunc parameters constructs a distribution object initialized based on these rules:

  • If count < 1, n = 1, and as such is equivalent to the default constructor, always generating zero.
  • If count > 0, n = count. Provided d = (high - low) / n is greater than zero, using d uniform subranges, each weight is assigned as follows: weight[k] = weightfunc(x), where x = low + k * d + d / 2, for k = 0, ..., n - 1.

The constructor that has a param_type parameter parm constructs a distribution object using parm as the stored parameter structure.

discrete_distribution::param_type

Stores all the parameters of the distribution.

struct param_type {
   typedef discrete_distribution<result_type> distribution_type;
   param_type();

   // construct using a range of weights, [firstW, lastW)
   template <class InputIterator>
   param_type(InputIterator firstW, InputIterator lastW);

   // construct using an initializer list for range of weights
   param_type(initializer_list<double> weightlist);

   // construct using unary operation function
   template <class UnaryOperation>
   param_type(size_t count, double low, double high, UnaryOperation weightfunc);

   std::vector<double> probabilities() const;

   bool operator==(const param_type& right) const;
   bool operator!=(const param_type& right) const;
   };

Parameters

firstW
The first iterator in the list from which to construct the distribution.

lastW
The last iterator in the list from which to construct the distribution (non-inclusive because iterators use an empty element for the end).

weightlist
The initializer_list from which to construct the distribution.

count
The number of elements in the distribution range. If count is 0, this is equivalent to the default constructor (always generates zero).

low
The lowest value in the distribution range.

high
The highest value in the distribution range.

weightfunc
The object representing the probability function for the distribution. Both the parameter and the return value must be convertible to double.

right
The param_type object to compare to this.

Remarks

This parameter package can be passed to operator() to generate the return value.

See also

<random>