SUM (Transact-SQL)
Applies to: SQL Server Azure SQL Database Azure SQL Managed Instance Azure Synapse Analytics Analytics Platform System (PDW) SQL analytics endpoint in Microsoft Fabric Warehouse in Microsoft Fabric
Returns the sum of all the values, or only the DISTINCT values, in the expression. SUM can be used with numeric columns only. Null values are ignored.
Transact-SQL syntax conventions
Syntax
-- Aggregate Function Syntax
SUM ( [ ALL | DISTINCT ] expression )
-- Analytic Function Syntax
SUM ( [ ALL ] expression) OVER ( [ partition_by_clause ] order_by_clause)
Arguments
ALL
Applies the aggregate function to all values. ALL is the default.
DISTINCT
Specifies that SUM returns the sum of unique values.
expression
A constant, column, or function, and any combination of arithmetic, bitwise, and string operators. expression is an expression of the exact numeric or approximate numeric data type category, except for the bit data type. Aggregate functions and subqueries aren't permitted. For more information, see Expressions (Transact-SQL).
OVER ( [ partition_by_clause ] order_by_clause)
partition_by_clause divides the result set produced by the FROM clause into partitions to which the function is applied. If not specified, the function treats all rows of the query result set as a single group. order_by_clause determines the logical order in which the operation is performed. order_by_clause is required. For more information, see OVER Clause (Transact-SQL).
Return Types
Returns the summation of all expression values in the most precise expression data type.
Expression result | Return type |
---|---|
tinyint | int |
smallint | int |
int | int |
bigint | bigint |
decimal category (p, s) | decimal(38, s) |
money and smallmoney category | money |
float and real category | float |
Remarks
SUM is a deterministic function when used without the OVER and ORDER BY clauses. It's nondeterministic when specified with the OVER and ORDER BY clauses. For more information, see Deterministic and Nondeterministic Functions. Also, SUM might appear to behave as a nondeterministic function when you use it with float and real data types. But the underlying reason is the approximate nature of these data types.
Examples
A. Using SUM to return summary data
The following examples show using the SUM function to return summary data in the AdventureWorks2022 database.
SELECT Color, SUM(ListPrice), SUM(StandardCost)
FROM Production.Product
WHERE Color IS NOT NULL
AND ListPrice != 0.00
AND Name LIKE 'Mountain%'
GROUP BY Color
ORDER BY Color;
GO
Here's the result set.
Color
--------------- --------------------- ---------------------
Black 27404.84 5214.9616
Silver 26462.84 14665.6792
White 19.00 6.7926
(3 row(s) affected)
B. Using the OVER clause
The following example uses the SUM function with the OVER clause to provide a cumulative total of yearly sales for each territory in the Sales.SalesPerson
table in the AdventureWorks2022 database. The data is partitioned by TerritoryID
and logically ordered by SalesYTD
. This means that the SUM function is computed for each territory based on the sales year. For TerritoryID
1, there are two rows for sales year 2005 representing the two sales people with sales that year. The cumulative total sales value for these two rows is computed and then the third row representing sales for the year 2006 is included in the computation.
SELECT BusinessEntityID, TerritoryID
,DATEPART(yy,ModifiedDate) AS SalesYear
,CONVERT(VARCHAR(20),SalesYTD,1) AS SalesYTD
,CONVERT(VARCHAR(20),AVG(SalesYTD) OVER (PARTITION BY TerritoryID
ORDER BY DATEPART(yy,ModifiedDate)
),1) AS MovingAvg
,CONVERT(VARCHAR(20),SUM(SalesYTD) OVER (PARTITION BY TerritoryID
ORDER BY DATEPART(yy,ModifiedDate)
),1) AS CumulativeTotal
FROM Sales.SalesPerson
WHERE TerritoryID IS NULL OR TerritoryID < 5
ORDER BY TerritoryID,SalesYear;
Here's the result set.
BusinessEntityID TerritoryID SalesYear SalesYTD MovingAvg CumulativeTotal
---------------- ----------- ----------- -------------------- -------------------- --------------------
274 NULL 2005 559,697.56 559,697.56 559,697.56
287 NULL 2006 519,905.93 539,801.75 1,079,603.50
285 NULL 2007 172,524.45 417,375.98 1,252,127.95
283 1 2005 1,573,012.94 1,462,795.04 2,925,590.07
280 1 2005 1,352,577.13 1,462,795.04 2,925,590.07
284 1 2006 1,576,562.20 1,500,717.42 4,502,152.27
275 2 2005 3,763,178.18 3,763,178.18 3,763,178.18
277 3 2005 3,189,418.37 3,189,418.37 3,189,418.37
276 4 2005 4,251,368.55 3,354,952.08 6,709,904.17
281 4 2005 2,458,535.62 3,354,952.08 6,709,904.17
(10 row(s) affected)
In this example, the OVER clause doesn't include PARTITION BY. This means that the function will be applied to all rows returned by the query. The ORDER BY clause specified in the OVER clause determines the logical order to which the SUM function is applied. The query returns a cumulative total of sales by year for all sales territories specified in the WHERE clause. The ORDER BY clause specified in the SELECT statement determines the order in which the rows of the query are displayed.
SELECT BusinessEntityID, TerritoryID
,DATEPART(yy,ModifiedDate) AS SalesYear
,CONVERT(VARCHAR(20),SalesYTD,1) AS SalesYTD
,CONVERT(VARCHAR(20),AVG(SalesYTD) OVER (ORDER BY DATEPART(yy,ModifiedDate)
),1) AS MovingAvg
,CONVERT(VARCHAR(20),SUM(SalesYTD) OVER (ORDER BY DATEPART(yy,ModifiedDate)
),1) AS CumulativeTotal
FROM Sales.SalesPerson
WHERE TerritoryID IS NULL OR TerritoryID < 5
ORDER BY SalesYear;
Here's the result set.
BusinessEntityID TerritoryID SalesYear SalesYTD MovingAvg CumulativeTotal
---------------- ----------- ----------- -------------------- -------------------- --------------------
274 NULL 2005 559,697.56 2,449,684.05 17,147,788.35
275 2 2005 3,763,178.18 2,449,684.05 17,147,788.35
276 4 2005 4,251,368.55 2,449,684.05 17,147,788.35
277 3 2005 3,189,418.37 2,449,684.05 17,147,788.35
280 1 2005 1,352,577.13 2,449,684.05 17,147,788.35
281 4 2005 2,458,535.62 2,449,684.05 17,147,788.35
283 1 2005 1,573,012.94 2,449,684.05 17,147,788.35
284 1 2006 1,576,562.20 2,138,250.72 19,244,256.47
287 NULL 2006 519,905.93 2,138,250.72 19,244,256.47
285 NULL 2007 172,524.45 1,941,678.09 19,416,780.93
(10 row(s) affected)
Examples: Azure Synapse Analytics and Analytics Platform System (PDW)
C. A simple SUM example
The following example returns the total number of each product sold in the year 2003.
-- Uses AdventureWorks
SELECT ProductKey, SUM(SalesAmount) AS TotalPerProduct
FROM dbo.FactInternetSales
WHERE OrderDateKey >= '20030101'
AND OrderDateKey < '20040101'
GROUP BY ProductKey
ORDER BY ProductKey;
Here's a partial result set.
ProductKey TotalPerProduct
---------- ---------------
214 31421.0200
217 31176.0900
222 29986.4300
225 7956.1500
D. Calculating group totals with more than one column
The following example calculates the sum of the ListPrice
and StandardCost
for each color listed in the Product
table.
-- Uses AdventureWorks
SELECT Color, SUM(ListPrice)AS TotalList,
SUM(StandardCost) AS TotalCost
FROM dbo.DimProduct
GROUP BY Color
ORDER BY Color;
The first part of the result set is shown below:
Color TotalList TotalCost
---------- ------------- --------------
Black 101295.7191 57490.5378
Blue 24082.9484 14772.0524
Grey 125.0000 51.5625
Multi 880.7468 526.4095
NA 3162.3564 1360.6185