Ambil perhatian
Akses ke halaman ini memerlukan kebenaran. Anda boleh cuba log masuk atau menukar direktori.
Akses ke halaman ini memerlukan kebenaran. Anda boleh cuba menukar direktori.
The following tutorials help you understand how to use ML.NET to build custom machine learning solutions and integrate them into your .NET applications:
- Sentiment analysis: Apply a binary classification task using ML.NET.
- GitHub issue classification: Apply a multiclass classification task using ML.NET.
- Price predictor: Apply a regression task using ML.NET.
- Iris clustering: Apply a clustering task using ML.NET.
- Recommendation: Generate movie recommendations based on previous user ratings
- Image classification: Retrain an existing TensorFlow model to create a custom image classifier using ML.NET.
- Anomaly detection: Build an anomaly detection application for product sales data analysis.
- Detect objects in images: Detect objects in images using a pretrained ONNX model.
- Categorize an image from Custom Vision ONNX model: Detect objects in images using an ONNX model trained in the Microsoft Custom Vision service.
- Classify sentiment of movie reviews: Load a pretrained TensorFlow model to classify the sentiment of movie reviews.
Next steps
For more examples that use ML.NET, see the dotnet/machinelearning-samples GitHub repository.
Bekerjasama dengan kami di GitHub
Sumber untuk kandungan ini boleh didapati di GitHub, di mana anda juga boleh membuat dan menyemak isu dan permintaan tarik. Untuk maklumat lanjut, lihat panduan penyumbang kami.