Rediger

Del via


Data source - Elasticsearch (preview)

The configurable options for Elasticsearch when using Azure OpenAI On Your Data. This data source is supported in API version 2024-02-15-preview.

Name Type Required Description
parameters Parameters True The parameters to use when configuring Elasticsearch.
type string True Must be elasticsearch.

Parameters

Name Type Required Description
endpoint string True The absolute endpoint path for the Elasticsearch resource to use.
index_name string True The name of the index to use in the referenced Elasticsearch.
authentication One of KeyAndKeyIdAuthenticationOptions, EncodedApiKeyAuthenticationOptions True The authentication method to use when accessing the defined data source.
embedding_dependency One of DeploymentNameVectorizationSource, EndpointVectorizationSource, ModelIdVectorizationSource False The embedding dependency for vector search. Required when query_type is vector.
fields_mapping FieldsMappingOptions False Customized field mapping behavior to use when interacting with the search index.
in_scope boolean False Whether queries should be restricted to use of indexed data. Default is True.
query_type QueryType False The query type to use with Elasticsearch. Default is simple
role_information string False Give the model instructions about how it should behave and any context it should reference when generating a response. You can describe the assistant's personality and tell it how to format responses.
strictness integer False The configured strictness of the search relevance filtering. The higher of strictness, the higher of the precision but lower recall of the answer. Default is 3.
top_n_documents integer False The configured top number of documents to feature for the configured query. Default is 5.

Key and key ID authentication options

The authentication options for Azure OpenAI On Your Data when using an API key.

Name Type Required Description
key string True The Elasticsearch key to use for authentication.
key_id string True The Elasticsearch key ID to use for authentication.
type string True Must be key_and_key_id.

Encoded API key authentication options

The authentication options for Azure OpenAI On Your Data when using an Elasticsearch encoded API key.

Name Type Required Description
encoded_api_key string True The Elasticsearch encoded API key to use for authentication.
type string True Must be encoded_api_key.

Deployment name vectorization source

The details of the vectorization source, used by Azure OpenAI On Your Data when applying vector search. This vectorization source is based on an internal embeddings model deployment name in the same Azure OpenAI resource. This vectorization source enables you to use vector search without Azure OpenAI api-key and without Azure OpenAI public network access.

Name Type Required Description
deployment_name string True The embedding model deployment name within the same Azure OpenAI resource.
type string True Must be deployment_name.

Endpoint vectorization source

The details of the vectorization source, used by Azure OpenAI On Your Data when applying vector search. This vectorization source is based on the Azure OpenAI embedding API endpoint.

Name Type Required Description
endpoint string True Specifies the resource endpoint URL from which embeddings should be retrieved. It should be in the format of https://{YOUR_RESOURCE_NAME}.openai.azure.com/openai/deployments/YOUR_DEPLOYMENT_NAME/embeddings. The api-version query parameter isn't allowed.
authentication ApiKeyAuthenticationOptions True Specifies the authentication options to use when retrieving embeddings from the specified endpoint.
type string True Must be endpoint.

Model ID vectorization source

The details of the vectorization source, used by Azure OpenAI On Your Data when applying vector search. This vectorization source is based on Elasticsearch model ID.

Name Type Required Description
model_id string True Specifies the model ID to use for vectorization. This model ID must be defined in Elasticsearch.
type string True Must be model_id.

API key authentication options

The authentication options for Azure OpenAI On Your Data when using an API key.

Name Type Required Description
key string True The API key to use for authentication.
type string True Must be api_key.

Fields mapping options

Optional settings to control how fields are processed when using a configured Elasticsearch resource.

Name Type Required Description
content_fields string[] False The names of index fields that should be treated as content.
vector_fields string[] False The names of fields that represent vector data.
content_fields_separator string False The separator pattern that content fields should use. Default is \n.
filepath_field string False The name of the index field to use as a filepath.
title_field string False The name of the index field to use as a title.
url_field string False The name of the index field to use as a URL.

Query type

The type of Elasticsearch retrieval query that should be executed when using it with Azure OpenAI On Your Data.

Enum Value Description
simple Represents the default, simple query parser.
vector Represents vector search over computed data.

Examples

Prerequisites:

  • Configure the role assignments from the user to the Azure OpenAI resource. Required role: Cognitive Services OpenAI User.
  • Install Az CLI and run az login.
  • Define the following environment variables: AzureOpenAIEndpoint, ChatCompletionsDeploymentName, SearchEndpoint, IndexName, Key, KeyId.
export AzureOpenAIEndpoint=https://example.openai.azure.com/
export ChatCompletionsDeploymentName=turbo
export SearchEndpoint='https://example.eastus.azurecontainer.io'
export IndexName=testindex
export Key='***'
export KeyId='***'

Install the latest pip packages openai, azure-identity.

import os
from openai import AzureOpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider

endpoint = os.environ.get("AzureOpenAIEndpoint")
deployment = os.environ.get("ChatCompletionsDeploymentName")
index_name = os.environ.get("IndexName")
search_endpoint = os.environ.get("SearchEndpoint")
key = os.environ.get("Key")
key_id = os.environ.get("KeyId")

token_provider = get_bearer_token_provider(
    DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default")

client = AzureOpenAI(
    azure_endpoint=endpoint,
    azure_ad_token_provider=token_provider,
    api_version="2024-02-15-preview",
)

completion = client.chat.completions.create(
    model=deployment,
    messages=[
        {
            "role": "user",
            "content": "Who is DRI?",
        },
    ],
    extra_body={
        "data_sources": [
            {
                "type": "elasticsearch",
                "parameters": {
                    "endpoint": search_endpoint,
                    "index_name": index_name,
                    "authentication": {
                        "type": "key_and_key_id",
                        "key": key,
                        "key_id": key_id
                    }
                }
            }
        ]
    }
)

print(completion.model_dump_json(indent=2))