Data source - Pinecone (preview)
The configurable options of Pinecone when using Azure OpenAI On Your Data. This data source is supported in API version 2024-02-15-preview
.
Name | Type | Required | Description |
---|---|---|---|
parameters |
Parameters | True | The parameters to use when configuring Pinecone. |
type |
string | True | Must be pinecone . |
Parameters
Name | Type | Required | Description |
---|---|---|---|
environment |
string | True | The environment name of Pinecone. |
index_name |
string | True | The name of the Pinecone database index. |
fields_mapping |
FieldsMappingOptions | True | Customized field mapping behavior to use when interacting with the search index. |
authentication |
ApiKeyAuthenticationOptions | True | The authentication method to use when accessing the defined data source. |
embedding_dependency |
DeploymentNameVectorizationSource | True | The embedding dependency for vector search. |
in_scope |
boolean | False | Whether queries should be restricted to use of indexed data. Default is True . |
role_information |
string | False | Give the model instructions about how it should behave and any context it should reference when generating a response. You can describe the assistant's personality and tell it how to format responses. |
strictness |
integer | False | The configured strictness of the search relevance filtering. The higher of strictness, the higher of the precision but lower recall of the answer. Default is 3 . |
top_n_documents |
integer | False | The configured top number of documents to feature for the configured query. Default is 5 . |
API key authentication options
The authentication options for Azure OpenAI On Your Data when using an API key.
Name | Type | Required | Description |
---|---|---|---|
key |
string | True | The API key to use for authentication. |
type |
string | True | Must be api_key . |
Deployment name vectorization source
The details of the vectorization source, used by Azure OpenAI On Your Data when applying vector search. This vectorization source is based on an internal embeddings model deployment name in the same Azure OpenAI resource. This vectorization source enables you to use vector search without Azure OpenAI api-key and without Azure OpenAI public network access.
Name | Type | Required | Description |
---|---|---|---|
deployment_name |
string | True | The embedding model deployment name within the same Azure OpenAI resource. |
type |
string | True | Must be deployment_name . |
Fields mapping options
The settings to control how fields are processed.
Name | Type | Required | Description |
---|---|---|---|
content_fields |
string[] | True | The names of index fields that should be treated as content. |
content_fields_separator |
string | False | The separator pattern that content fields should use. Default is \n . |
filepath_field |
string | False | The name of the index field to use as a filepath. |
title_field |
string | False | The name of the index field to use as a title. |
url_field |
string | False | The name of the index field to use as a URL. |
Examples
Prerequisites:
- Configure the role assignments from the user to the Azure OpenAI resource. Required role:
Cognitive Services OpenAI User
. - Install Az CLI and run
az login
. - Define the following environment variables:
AzureOpenAIEndpoint
,ChatCompletionsDeploymentName
,Environment
,IndexName
,Key
,EmbeddingDeploymentName
.
export AzureOpenAIEndpoint=https://example.openai.azure.com/
export ChatCompletionsDeploymentName=turbo
export Environment=testenvironment
export Key=***
export IndexName=pinecone-test-index
export EmbeddingDeploymentName=ada
Install the latest pip packages openai
, azure-identity
.
import os
from openai import AzureOpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
endpoint = os.environ.get("AzureOpenAIEndpoint")
deployment = os.environ.get("ChatCompletionsDeploymentName")
environment = os.environ.get("Environment")
key = os.environ.get("Key")
index_name = os.environ.get("IndexName")
embedding_deployment_name = os.environ.get("EmbeddingDeploymentName")
token_provider = get_bearer_token_provider(
DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default")
client = AzureOpenAI(
azure_endpoint=endpoint,
azure_ad_token_provider=token_provider,
api_version="2024-02-15-preview",
)
completion = client.chat.completions.create(
model=deployment,
messages=[
{
"role": "user",
"content": "Who is DRI?",
},
],
extra_body={
"data_sources": [
{
"type": "pinecone",
"parameters": {
"environment": environment,
"authentication": {
"type": "api_key",
"key": key
},
"index_name": index_name,
"fields_mapping": {
"content_fields": [
"content"
]
},
"embedding_dependency": {
"type": "deployment_name",
"deployment_name": embedding_deployment_name
}
}}
],
}
)
print(completion.model_dump_json(indent=2))