Notitie
Voor toegang tot deze pagina is autorisatie vereist. U kunt proberen u aan te melden of de directory te wijzigen.
Voor toegang tot deze pagina is autorisatie vereist. U kunt proberen de mappen te wijzigen.
Hiermee verwijdert u null-waarden uit de matrix.
Syntaxis
from pyspark.sql import functions as sf
sf.array_compact(col)
Parameterwaarden
| Kenmerk | Typologie | Description |
|---|---|---|
col |
pyspark.sql.Column of str |
Naam van kolom of expressie |
Retouren
pyspark.sql.Column: Een nieuwe kolom die een matrix is die de null-waarden uit de invoerkolom uitsluit.
Voorbeelden
Voorbeeld 1: Null-waarden verwijderen uit een eenvoudige matrix
from pyspark.sql import functions as sf
df = spark.createDataFrame([([1, None, 2, 3],)], ['data'])
df.select(sf.array_compact(df.data)).show()
+-------------------+
|array_compact(data)|
+-------------------+
| [1, 2, 3]|
+-------------------+
Voorbeeld 2: Null-waarden verwijderen uit meerdere matrices
from pyspark.sql import functions as sf
df = spark.createDataFrame([([1, None, 2, 3],), ([4, 5, None, 4],)], ['data'])
df.select(sf.array_compact(df.data)).show()
+-------------------+
|array_compact(data)|
+-------------------+
| [1, 2, 3]|
| [4, 5, 4]|
+-------------------+
Voorbeeld 3: Null-waarden verwijderen uit een matrix met alle null-waarden
from pyspark.sql import functions as sf
from pyspark.sql.types import ArrayType, StringType, StructField, StructType schema = StructType([StructField("data", ArrayType(StringType()), True)])
df = spark.createDataFrame([([None, None, None],)], schema)
df.select(sf.array_compact(df.data)).show()
+-------------------+
|array_compact(data)|
+-------------------+
| []|
+-------------------+
Voorbeeld 4: Null-waarden verwijderen uit een matrix zonder null-waarden
from pyspark.sql import functions as sf
df = spark.createDataFrame([([1, 2, 3],)], ['data'])
df.select(sf.array_compact(df.data)).show()
+-------------------+
|array_compact(data)|
+-------------------+
| [1, 2, 3]|
+-------------------+
Voorbeeld 5: Null-waarden verwijderen uit een lege matrix
from pyspark.sql import functions as sf
from pyspark.sql.types import ArrayType, StringType, StructField, StructType
schema = StructType([
StructField("data", ArrayType(StringType()), True)
])
df = spark.createDataFrame([([],)], schema)
df.select(sf.array_compact(df.data)).show()
+-------------------+
|array_compact(data)|
+-------------------+
| []|
+-------------------+